Answer:
correct answer is Precipitous vaginal delivery
Explanation:
given data
cervix dilated = 4 cm
effaced = 100%
delivery = 5 minutes later
solution
correct answer is Precipitous vaginal delivery because precipitous take delivery time less than = 3 hours
A multipara progress at rate 1.5 cm of dilation per hour
and it is progress for 10 cm for the deliver and birth averages approx 20 minute
so here correct answer is Precipitous vaginal delivery
Answer:
negative acceleration of 4m/s²
Explanation:
Given parameters:
Initial velocity = 66m/s
Final velocity = 26m/s
Time taken = 10s
Unknown:
Description of the acceleration = ?
Solution:
Acceleration is the rate of change of velocity with time.
It is mathematically expressed as;
acceleration =
v is the final velocity
u is the initial velocity
t is the time taken
Now insert the parameters and solve;
Acceleration =
= -4m/s²
So, we see a negative acceleration of 4m/s²
Answer:
Δx = 6.33 x 10⁻³ m = 6.33 mm
Explanation:
We can use the Young's Double Slit Experiment Formula here:

where,
Δx = distance between consecutive dark fringes = width of central bright fringe = ?
λ = wavelength of light = 633 nm = 6.33 x 10⁻⁷ m
L = distance between screen and slit = 3.7 m
d = slit width = 0.37 mm = 3.7 x 10⁻⁴ m
Therefore,

<u>Δx = 6.33 x 10⁻³ m = 6.33 mm</u>
Answer:
Current flows in a resistor-capacitor circuit because of the varying electric field across the plates of a capacitor induced by an AC voltage source <em>(displacement current)</em>
Explanation:
In a capacitor, current does not flow the same way it does in a circuit, that is through conduction. This is because there is a highly resistive material in between the plates of the capacitor. Rather current flows through a phenomenon called displacement current.
Because of change in charge accumulation with time above the plates, the electric field changes causing the displacement current.
Displacement current arises due to the flow of electrons as a result of the varying magnetic fields set up on the plates of the capacitor when supplied with an AC voltage. It is important to note that a DC voltage does not induce any displacement current.
<em>Through this, phenomenon discovered by Maxwell, current is able to flow in a resistor-capacitor circuit despite the absence of an electrically conductive path through the plates.</em>