Answer:
Physics
Explanation:
Explanation:
We can use the Theorem of Work (W) and Kinetic Energy (K):
W=ΔK=Kf−Ki
it basically tells us that the work done on our system will show up as change in Kinetic Energy:
We know that the initial Kinetic Energy, Ki=12mv2i, is zero (starting from rest) while the final will be equal to 352J; Work will be force time displacement. so we get:
F⋅d=Ff
45d=352
and so:
d=35245=7.8≈8m
Answer: A 2m/s^2
Steps: Formula for acceleration. (Velocity Final - Initial Velocity) / Time
(24 - 0) / 12 = 2
First, when the student added the layers of wax over each other, this became a representation of sedimentary rocks.
Then the student folded his/her palm and squeezed the layers of wax. This means that the student applied heat and pressure on the wax (sedimentary rocks)
Referring to the diagram below which represents the rock cycle, we will find that applying heat and pressure on sedimentary rocks would convert these rocks into metamorphic rocks.
Based on the above, the best choice would be:<span>d. Heat and pressure can change sedimentary rocks into metamorphic rocks.</span>
Answer:




Explanation:
r = Radius
k = Coulomb constant = 
Electric field is given by

The charge is 

The charge is 
The charge inside will have the polarity changed

Outside the charge will be

Answer:
Temperature will be 305 K
Explanation:
We have given The asteroid has a surface area 
Power absorbed P = 3800 watt
Boltzmann constant 
According to Boltzmann rule power radiated is given by




So temperature will be 305 K