Answer:
- <em>Option d. Its empirical formula is CH</em><em>₂</em><em>.</em>
Explanation:
The percent composition of the compound allow you to calculate the empirical formula of the compound but is not enough to calculate either the molar mass or the molecular formula. So, since now you can discard options b. and c.
Telling that it is a hydrocarbon (option e.) is true but very vague compared with finding the empirical formula. So, you can also discard the option e.
The fact that the product has a triple bond cannot be concluded from the percent composition, you should find the molecular formula to assert whether it contains or not a triple bond. So, you could discard option a., which lets you only with choice d.
Let us find the empirical formula to be certain that it is CH₂.
1. <u>First, assume a basis of 100 g of compound</u>:
- H: 14.5% × 100 g = 14.0 g
- C: 85.5% × 100 g = 85.5 g
2. <u>Divide each element by its atomic mass to find number of moles</u>:
- H: 14.0 g / 1.008 g/mol = 14.38 mol
- C: 85.5 g / 12.011 g/mol = 7.12 mol
3. <u>Divide both amounts by the smallest number, to find the mole ratio</u>:
- H: 14.38 mol / 7.12 mol ≈ 2
- C: 7.12 mol / 7.12 mol = 1.
Hence, the ratio is 2:1 and the empirical formula is CH₂.
Answer:
16.8%
Explanation:
31% NaOH molar mass 40 gm
69% H2O molar mass 18 gm
1000 gm would be
310 gm NaOH or 310/40 = 7.75 moles
690 gm of H2O or 690/18 = 38.333 moles
7.75 / (7.75 + 38.333) = .168 mole fraction
Answer
The particle theory is used to explain the properties of solids, liquids and gases. The strength of bonds (attractive forces) between particles is different in all three states.
When oxygen has an electronegativity of 3.5, and carbon has an electronegativity of 2.5, then the oxygen atom would have a slightly negative charge. The oxygen atom in the carbon monoxide molecule would pull more electrons to its side since it has higher electronegativity making it slightly negative and the carbon would have a slightly positive charge as it would contain less electrons. This results to the formation of a polar molecule. A polar molecule is made when the molecule contains a slightly positive end and a slightly negative end. It would have a net dipole which is a result of the partial opposing charges in the molecule.
Answer:
Water near the poles often have higher salinity because Cold polar air cools the water and lowers its temperature, increasing its salinity. Fresh water freezes out of seawater to become sea ice, which also increases the salinity of the remaining water.
Understands! ♥