Answer:
0.6 moles of CaO will produced.
Explanation:
Given data:
Mass of calcium = 23.9 g
Moles of CaO produced = ?
Solution:
Chemical equation:
2Ca + O₂ → 2CaO
Number of moles of calcium:
Number of moles = mass/ molar mass
Number of moles = 23.9 g / 40 g/mol
Number of moles = 0.6 mol
Now we will compare the moles of calcium and CaO.
Ca : CaO
2 : 2
0.6 : 0.6
0.6 moles of CaO will produced.
Add 1 tsp. of vinegar to the canister at a time, filling it almost to the top. You need to add as much vinegar to the canister as possible without the vinegar and the baking soda coming into contact when you later snap the lid onto the canister. Depending on the exact canister, this may be around 5 tsp.
Let us assume that there is a 100g sample of Opal. The masses of each element will be:
29.2g Si
33.3g O
37.5g H2O
Now we divide each constituent's mass by its Mr to get the moles present
Si: (29.2 / 28) = 1.04
O: (33.3 / 16) = 2.08
H2O: (37.5 / 18) = 2.08
Now we divide by the smallest number and obtain:
Si: 1
O: 2
H2O: 2
Thus, the empirical formula of Opal is:
SiO2 . 2H2O
The
answer is:
glucose,
a polar organic compound
silver
nitrate, an ionic compound
<span>The two have net charges
that enable them to attract with water molecules. Water molecules are partly
charged because of the arrangement of electron clouds around the molecule. The oxygen
atom in the molecule is more electronegative
than the two hydrogens. Therefore water is able to
form electrostatic attraction forces with
the charged molecules</span>