Na2CO3 mol = mass/rfm
= 91.9 / ( 23+23+12+16+16+16)
= 91.9/106
=919/1060 or roughly 0.867
Mole ratio of sodium carbonate to calcium carbonate is 1:1
Therefore calcium carbonate mol = mass/rfm
919/1060 = mass / (40+12+16+16+16)
919/1060 = mass / 100
Mass = 919/1060 x 100
= 4595/53 or 86.7g to 3 significant figures
That both of them are warm....at a certain temputurature causing one to fell,cozy
<h3>
Answer:</h3>
5.89 × 10^23 molecules of F₂
<h3>
Explanation:</h3>
The equation for the reaction between fluorine (F₂) and ammonia (NH₃) is given by;
5F₂ + 2NH₃ → N₂F₄ + 6 HF
We are given 66.6 g NH₃
We are required to determine the number of fluorine molecules
<h3>Step 1: Moles of Ammonia </h3>
Moles = Mass ÷ Molar mass
Molar mass of ammonia = 17.031 g/mol
Moles of NH₃ = 66.6 g ÷ 17.031 g/mol
= 3.911 moles
<h3>Step 2: Moles of Fluorine </h3>
From the equation 5 moles of Fluorine reacts with 2 moles of ammonia
Therefore,
Moles of fluorine = Moles of Ammonia × 5/2
= 3.911 moles × 5/2
= 9.778 moles
<h3>Step 3: Number of molecules of fluorine </h3>
We know that 1 mole of a compound contains number of molecules equivalent to the Avogadro's number, 6.022 × 10^23 molecules
Therefore;
1 mole of F₂ = 6.022 × 10^23 molecules
Thus,
9.778 moles of F₂ = 9.778 moles × 6.022 × 10^23 molecules/mole
= 5.89 × 10^23 molecules
Therefore, the number of fluorine molecules needed is 5.89 × 10^23 molecules
Q1
Asteroids
Q2 Comet
A comet is a body with nucleus,Coma and tail.
Q3 Meteoroids.
Q4 Meteoroids(Meteor)....
When they enter earth atmosphere at high speeds
Q5... The SUN
Answer:
(a) Pair 1: H₂S and HS⁻
Pair 2: NH₃ and NH₄⁺
(b) Pair 1: HSO₄⁻ and SO₄⁻
Pair 2: NH₃ and NH₄⁺
(c) Pair 1: HBr and Br⁻
Pair 2: CH₃O⁻ and CH₃OH
(d) Pair 1: HNO₃ and NO₃⁻
Pair 2: H₃O⁺
Explanation:
When an acid loses its proton (H⁺), a conjugate base is produced.
When a base accepts a proton (H⁺), it forms a conjugate acid.
(a) H₂S is an acid. When it loses a proton, it forms the conjugate base HS⁻.
NH₃ is a base. When NH₃ gains a proton, it forms the conjugate acid NH₄⁺
(b) The acid HSO₄⁻ loses a H⁺ ion and forms the conjugate base SO₄²⁻.
The base NH₃ accepts a H⁺ ion to form the conjugate acid NH₄⁺.
(c) HBr is an acid. When loses the H⁺ ion, it forms the conjugate base Br⁻.
CH₃O⁻ accepts a H⁺ ion to form the conjugate acid CH₃OH.
(d) HNO₃ loses a proton to form the conjugate base NO₃⁻.
H₂O gains a proton to form the conjugate acid H₃O⁺.