Answer:
(a) The probability of more than one death in a corps in a year is 0.1252.
(b) The probability of no deaths in a corps over 7 years is 0.0130.
Step-by-step explanation:
Let <em>X</em> = number of soldiers killed by horse kicks in 1 year.
The random variable
.
The probability function of a Poisson distribution is:

(a)
Compute the probability of more than one death in a corps in a year as follows:
P (X > 1) = 1 - P (X ≤ 1)
= 1 - P (X = 0) - P (X = 1)

Thus, the probability of more than one death in a corps in a year is 0.1252.
(b)
The average deaths over 7 year period is: 
Compute the probability of no deaths in a corps over 7 years as follows:

Thus, the probability of no deaths in a corps over 7 years is 0.0130.
Answer:
-15 < 20
Step-by-step explanation:
5(w - 3) < 5w + 20
Distribute;
5w - 15 < 5w + 20
Subtract 5w from both sides;
-15 < 20
513/2=256.5
which means 256 and 257 are the answers
Answer:
51,111%
Step-by-step explanation:
We know that 45% have a dog but no cat. While 23% have both a dog and a cat.
Then Pr(X has cat|X has dog) = Pr(X has dog and cat)/Pr(X has dog)
= Pr(X has dog and cat)/Pr(X has dog) = 0.23/0.45 = 0.51 ≈ 51,111%
The probability that a student’s family owns a cat if the family owns a dog is 51,111%