Answer:
-1,103.39KJ/mol
Explanation:
We use the subtract the standard enthalphies of formation of the reactants from that of the products. It must be taken into consideration that the enthalpy of formation of elements and their molecules alone are not taken into consideration. Hence, what we would be considering are the standard enthalpies of formation of H2S, H2O and SO2.
In places where we have more than one mole, we multiply by the number of moles as seen in the balanced chemical equations.
The standard enthalpies of the molecules above are as follows:
H2S = -20.63KJ/mol
H2O = -285.8KJ/mol
SO2 = -296.84KJ/mol
O2 = 0KJ/mol
ΔrH⦵ = [2ΔfH⦵(H2O) + 2 ΔfH⦵(SO2)] − [ΔfH⦵(H2S) + 3
ΔfH⦵(O2)]
ΔrH⦵ =[(2 × -285.8) + (2 × -296.84)]
-[ 3 × -20.63)]
= (-571.6 - 593.68 + 61.89) = -1,103.39KJ/mol
This is thermal conduction.
In conduction area with higher kinetic energy (in this case how water) transfer thermal energy to an area with lower kinetic energy (in this case frozen vegetables). Thermal c<span>onduction takes place in all phases of </span>matter (solids, liquids, gases). Rate of conduction is proportional with <span>temperature difference between substances.</span>
Answer:
When two forces acting on an object are of similar size but acting in opposite directions, we say they are forces of balance. If the forces on an object are balanced (or if there are no forces acting on it), this is what happens: the object stays stationary
It is translational motion. i know because i found it on this site. its verified too, have a nice day