Answer:
The sum of an object's potential and kinetic energies is called the object's mechanical energy. As an object falls its potential energy decreases, while its kinetic energy increases. The decrease in potential energy is exactly equal to the increase in kinetic energy
Thank you and please rate me as brainliest as it will help me to level up
Answer:
hello your question lacks the required reaction pairs below are the missing pairs
Reaction system 1 :
A + B ⇒ D ![-r_{1A} = 10exp[-8000K/T]C_{A}C_{B}](https://tex.z-dn.net/?f=-r_%7B1A%7D%20%20%3D%2010exp%5B-8000K%2FT%5DC_%7BA%7DC_%7BB%7D)
A + B ⇒ U 
Reaction system 2
A + B ⇒ D 
B + D ⇒ U 
Answer : reaction 1 : description of the reactor system : The desired reaction which is the first reaction possess a higher activation energy and higher temperature is required to kickstart reaction 1
condition to maximize selectivity : To maximize selectivity the concentration of reaction 1 should be higher than that of reaction 2
reaction 2 :
description of reactor system : The desired reaction i.e. reaction 1 has a lower activation energy and lower temperatures is required to kickstart reaction 1
condition to maximize selectivity:
to increase selectivity the concentration of D should be minimal
Explanation:
Reaction system 1 :
A + B ⇒ D ![-r_{1A} = 10exp[-8000K/T]C_{A}C_{B}](https://tex.z-dn.net/?f=-r_%7B1A%7D%20%20%3D%2010exp%5B-8000K%2FT%5DC_%7BA%7DC_%7BB%7D)
A + B ⇒ U 
the selectivity of D is represented using the relationship below
hence SDu = 1/10 * 
description of the reactor system : The desired reaction which is the first reaction possess a higher activation energy and higher temperature is required to kickstart reaction 1
condition to maximize selectivity : To maximize selectivity the concentration of reaction 1 should be higher than that of reaction 2
Reaction system 2
A + B ⇒ D 
B + D ⇒ U 
selectivity of D

hence Sdu = 
description of reactor system : The desired reaction i.e. reaction 1 has a lower activation energy and lower temperatures is required to kickstart reaction 1
condition to maximize selectivity:
to increase selectivity the concentration of D should be minimal
Answer:
10.52g KOH
Explanation:
250.0 ml X 1L/1000ml X 0.75 mol KOH/1L X 56.105gKOH/1 mol KOH =10.52g KOH
Answer:
It is important to know if a resource is renewable or non-renewable because renewable resources are self-sustaining (unlike non-renewable resources). If a non-renewable resource is used too often, that resource may eventually become non-existant. This can also happen to renewable resources, but it is more difficult.