Answer:y ÷ 2 + x; use x = 1, and y = 2y ÷ 2 + x; use x = 1, and y = 2y ÷ 2 + x; use x = 1, and y = 2y ÷ 2 + x; use x = 1, and y = 2y ÷ 2 + x; use x = 1, and y = 2y ÷ 2 + x; use x = 1, and y = 2y ÷ 2 + x; use x = 1, and y = 2y ÷ 2 + x; use x = 1, and y = 2y ÷ 2 + x; use x = 1, and y = 2y ÷ 2 + x; use x = 1, and y = 2y ÷ 2 + x; use x = 1, and y = 2y ÷ 2 + x; use x = 1, and y = 2
Step-by-step explanation:
The opposite angles of a parallelogram are congruent, so you have to set the values of each angle equal to each other and solve for x.
(10x-19)° = (7x+23)°
-7x -7x
3x-19 = 23
+19 +19
3x = 43
÷3 ÷3
x = 43
Then, substitute the value of x back into the equations.
(10x-19)°
(10(14)-19)°
(140-19)°
121°
(7x+23)°
(7(14)+23)°
(98+23)°
121°
First, you have to find the equation of the perpendicular bisector of this given line.
to do that, you need the slope of the perpendicular line and one point.
Step 1: find the slope of the given line segment. We have the two end points (10, 15) and (-20, 5), so the slope is m=(15-5)/(10-(-20))=1/3
the slope of the perpendicular line is the negative reciprocal of the slope of the given line, m=-3/1=-3
step 2: find the middle point: x=(-20+10)/2=-5, y=(15+5)/2=10 (-5, 10)
so the equation of the perpendicular line in point-slope form is (y-10)=-3(x+5)
now plug in all the given coordinates to the equation to see which pair fits:
(-8, 19): 19-10=9, -3(-8+5)=9, so yes, (-8, 19) is on the perpendicular line.
try the other pairs, you will find that (1,-8) and (-5, 10) fit the equation too. (-5,10) happens to be the midpoint.
Answer:
15 - 10 = 5(3 - 2)
its 5
Step-by-step explanation:
Answer:
Tiffany ate 4 slices of pizza
Step-by-step explanation:
1/4 of 16 is 4