Answer:
S(t) = -4.9t^2 + Vot + 282.24
Step-by-step explanation:
Since the rocket is launched from the ground, So = 0 and S(t) = 0
Using s(t)=gt^2+v0t+s0 to get time t
Where g acceleration due to gravity = -4.9m/s^2. and
initial velocity = 39.2 m/a
0 = -4.9t2 + 39.2t
4.9t = 39.2
t = 8s
Substitute t in the model equation
S(t) = -49(8^2) + 3.92(8) + So
Let S(t) =0
0 = - 313.6 + 31.36 + So
So = 282.24m
The equation that can be used to model the height of the rocket after t seconds will be:
S(t) = -4.9t^2 + Vot + 282.24
Answer:
A score of 150.25 is necessary to reach the 75th percentile.
Step-by-step explanation:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
A set of test scores is normally distributed with a mean of 130 and a standard deviation of 30.
This means that 
What score is necessary to reach the 75th percentile?
This is X when Z has a pvalue of 0.75, so X when Z = 0.675.




A score of 150.25 is necessary to reach the 75th percentile.
Hello!
Step-by-step explanation:
Mean: 48
Median: 40
Mode: None
Range: 63
Hope this helps!
Answer:
c seems right
Step-by-step explanation: