Answer: The vapor pressure of water at 298 K is 3.565kPa.
Explanation:
The vapor pressure is determined by Clausius Clapeyron equation:

where,
= initial pressure at 298 K = ?
= final pressure at 373 K = 101.3 kPa
= enthalpy of vaporisation = 41.1 kJ/mol = 41100 J/mol
R = gas constant = 8.314 J/mole.K
= initial temperature = 298 K
= final temperature = 373 K
Now put all the given values in this formula, we get
![\log (\frac{101.3}{P_1})=\frac{41100}{2.303\times 8.314J/mole.K}[\frac{1}{298K}-\frac{1}{373K}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7B101.3%7D%7BP_1%7D%29%3D%5Cfrac%7B41100%7D%7B2.303%5Ctimes%208.314J%2Fmole.K%7D%5B%5Cfrac%7B1%7D%7B298K%7D-%5Cfrac%7B1%7D%7B373K%7D%5D)


Therefore, the vapor pressure of water at 298 K is 3.565kPa.
Answer:
4-chloro-4-methyl-cyclohexene.
Explanation:
Hello,
On the attached picture you will find the chemical reaction forming the required product, 4-chloro-4-methyl-cyclohexene. In this case, according to the Markovnicov’s rule, it is more likely for the chlorine to be substituted at the carbon containing the methyl radical in addition to the hydrogen to the next carbon to break the double bond and yield the presented product.
Best regards.
Sweating is your body releasing water to cool it’s self down. When doing an activity the water in ur body warms up. And is then released to stop from overheating
A control group is the comparison group that helps to "make sure your experiment works." A control group is separated from the rest of the experiment and nothing happens to it kinda like a controlled variable. Controlled variables are the variables in a experiment that remains the same for example a temperature, time, type of products, etc..
Hope this helps!
Answer:
She can add 380 g of salt to 1 L of hot water (75 °C) and stir until all the salt dissolves. Then, she can carefully cool the solution to room temperature.
Explanation:
A supersaturated solution contains more salt than it can normally hold at a given temperature.
A saturated solution at 25 °C contains 360 g of salt per litre, and water at 70 °C can hold more salt.
Yasmin can dissolve 380 g of salt in 1 L of water at 70 °C. Then she can carefully cool the solution to 25 °C, and she will have a supersaturated solution.
B and D are wrong. The most salt that will dissolve at 25 °C is 360 g. She will have a saturated solution.
C is wrong. Only 356 g of salt will dissolve at 5 °C, so that's what Yasmin will have in her solution at 25 °C. She will have a dilute solution.