A system is a part of the <em>physical</em> universe defined <em>arbitrarily</em> for observation purposes.
Boundaries are a part of the <em>physical</em> universe that are around the system.
In a scientific sense, a system is a part of the <em>physical</em> universe whose boundaries, that is, the limit between the system and its surroundings, are defined <em>arbitrarily</em> for observation purposes.
A system contains at least a model, represented in a phenomenological way, and it can be isolated (no mass nor energy interactions), closed (no mass interactions) or open.
The surroundings are a part of the <em>physical</em> universe that are around the system.
An example is a coffee-maker, where coffee-maker the system and air represents the surroundings, the coffee-maker receives energy from a heat source to warm up itself and releases part of such energy to the air.
We kindly invite to check this question on systems and surroundings: brainly.com/question/6044762
If the core were to cool completely, the planet would grow cold and dead. It also would get a little dark: Power utilities pull radiant heat from Earth's crust and use it to heat water, the steam from which powers turbines to create electricity.Cooling also could cost us the magnetic shield around the planet created by heat from the core. This shield protects Earth from cosmic radiation. The shield is created by a convection process caused by constantly moving iron. Like the planet itself, Earth's core is constantly spinning. Some scientists think it's moving even faster than the rest of the planet. The friction converts kinetic energy into electrical and magnetic energy that forms the field, which deflects harmful, charged particles emanating from the sun toward the north and south poles. Your welcome :)
<span>H and Li have a +1 charge. Cl and OH have a -1 charge. When written out it should look like this:
H(+1) + Cl(-1) + Li(+1) + OH(-1) --> H2O + Li(+1) + Cl(-1)
if you wanted the net ionic equation it would be:
H(+1) + OH(-1) --> H2O</span>
Answer:
The dispersed particles are spread evenly throughout the dispersion medium, which can be a solid, liquid, or gas. Because the dispersed particles of a colloid are not as large as those of a suspension, they do not settle out upon standing.
Explanation: