Answer:
Chloroform is expected to boil at 333 K (60
).
Explanation:
For liquid-vapor equilibrium at 1 atm,
= 0.
We know,
, where T is temperature in kelvin scale.
Here both
and
are corresponding to vaporization process therefore T represents boiling point of chloroform.
So, ![0=(31.4\times 10^{3}\frac{J}{mol})-[T\times (94.2\frac{J}{mol.K})]](https://tex.z-dn.net/?f=0%3D%2831.4%5Ctimes%2010%5E%7B3%7D%5Cfrac%7BJ%7D%7Bmol%7D%29-%5BT%5Ctimes%20%2894.2%5Cfrac%7BJ%7D%7Bmol.K%7D%29%5D)
or, T = 333 K
So, at 333 K (60
) , chloroform is expected to boil.
Answer: 24.1%, under below assumptions.
Justification:
The question is quite ambiguous, because one of the data is not clearly stated. It says that the mixture consists on two compounds:
- sodium bicarbonate, and
- ammonium bicarbonate
.After, it says that it is 75.9 % bicarbonate, but it does not specify which bicarbonate, it might be the sodium bicarbonate or the ammonium bicarbonate. It is apparent that you omitted that information by error.
Given that later, the question is <span>what the mass percent of sodium bicarbonate is in the mixture, it is supposed that the 75.9% content is of ammonium bicarbonate.
With that said, you can calculate the mass percent of sodium bicarbonate, because there are only two compounds and so you know that both add up the 100% of the mixture.
In formulas:
100% = %m/m sodium bicarbonate + %m/m ammonium bicarbonate = 100%
=> % m/m sodium bicarbonate = 100% - % m/s ammonium bicarbonate
=> % sodium bicarbonate = 100% - 75.9% = 24.1%
Answer: 24.1%
</span>
Answer:
A
Explanation:
This popular experiment enabled us to know the charge of an electron. It was performed by Robert Millikan and Harvey Fletcher and have the process and procedure to measure the elementary electronic charge. In fact, Robert Millikan was awarded the Nobel prize in physics in the year 1923 for how efforts.
They were able to determine the charge by repeating the experiment for several droplets and later proposed that the charges were integer multiples of a particular base value.