It begins with heating of phenol and formaldehyde in the presence of a catalyst such as hydrochloric acid, zinc chloride, or the base ammonia. This creates a liquid condensation product, referred to as Bakelite A, which is soluble in alcohol, acetone, or additional phenol.
Answer: 30. 7 moles SO3
31. 3 moles SO2 and 3 moles SO3
Explanation: To solve for this problem use the mole ratio of the substances involved in the reaction.
Solution for number 30:
3.5 moles O2 x 2 moles SO3 / 1 mole O2
= 7 moles SO3
31. 192 g SO2 x 1 mole SO2 / 64 g/ mol SO2
= 3 moles SO2
3 moles SO2 x 2 moles SO3 / 2 moles SO2
= 3 moles SO3
Answer: The value of
for the half-cell reaction is 0.222 V.
Explanation:
Equation for solubility equilibrium is as follows.

Its solubility product will be as follows.
![K_{sp} = [Ag^{+}][Cl^{-}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%20%5BAg%5E%7B%2B%7D%5D%5BCl%5E%7B-%7D%5D)
Cell reaction for this equation is as follows.

Reduction half-reaction:
, 
Oxidation half-reaction:
,
= ?
Cell reaction: 
So, for this cell reaction the number of moles of electrons transferred are n = 1.
Solubility product, ![K_{sp} = [Ag^{+}][Cl^{-}]](https://tex.z-dn.net/?f=K_%7Bsp%7D%20%3D%20%5BAg%5E%7B%2B%7D%5D%5BCl%5E%7B-%7D%5D)
= 
Therefore, according to the Nernst equation
At equilibrium,
= 0.00 V
Putting the given values into the above formula as follows.

= 
= 0.577 V
Hence, we will calculate the standard cell potential as follows.



= 0.222 V
Thus, we can conclude that value of
for the half-cell reaction is 0.222 V.
3*40+3*2*35.5=333* Avogadro’s number =
1.98*10^25