Water has a molar mass of 18.015 g/mol . This means that one mole of water molecules has a mass of 18.015 g . So, to sum this up, 6.022⋅1023 molecules<span> of water will amount to 1 mole of water, which in turn will have a mass of 18.015 g . 2.7144moles H2O ⋅</span>6.022<span>⋅1023molec.1mole H2O =1.635⋅1024molec.</span>
Answer:

Explanation:
Henry's law states that the solubility of a gas is directly proportional to its partial pressure. The equation may be written as:

Where
is Henry's law constant.
Our strategy will be to identify the Henry's law constant for oxygen given the initial conditions and then use it to find the solubility at different conditions.
Given initially:

Also, at sea level, we have an atmospheric pressure of:

Given mole fraction:

According to Dalton's law of partial pressures, the partial pressure of oxygen is equal to the product of its mole fraction and the total pressure:

Then the equation becomes:

Solve for
:

Now we're given that at an altitude of 12,000 ft, the atmospheric pressure is now:

Apply Henry's law using the constant we found:

Answer:
the answer is below
Explanation:
Cirrus clouds form from the ascent of dry air, making the small quantity of water vapour in the air undergo deposition into ice (to change from a gas directly into a solid). Cirrus is made up completely of ice crystals, which provides their white colour and form in a wide range of shapes and sizes.
Answer:
5SiO2 + 2CaC2 = 5Si + 2CaO + 4CO2
Explanation:
balancing equations is a lot of trial and error. My strategy to approaching this equation was to get the O's balanced. After trying several combonations I found that I needed 10 O's on each side of the equation for the other elements to match up. After I balanced the O's, I balanced my C's to 4 on each side. Then I balanced my Ca's to have 2 on each side. And last but not least I balanced my Si to have 5 on each side.
The given question is incomplete. The complete question is:
The combustion of propane (C3H8) in the presence of excess oxygen yields
and
When only 2.5 mol of
are consumed in order to complete the reaction, ________ mol of
are produced.
Answer: Thus when 2.5 mol of
are consumed in their reaction, 1.5 mol of
are produced
Explanation:
The balanced chemical equation is:

According to stoichiometry :
5 moles of
produce = 3 moles of 
Thus 2.5 moles of
will produce =
moles of 
Thus when 2.5 mol of
are consumed in their reaction, 1.5 mol of
are produced