Answer:
the nth term of the sequence is 
Step-by-step explanation:
Given : An arithmetic sequence begins as follows: 
To find : Which of the following gives the definition of its nth term?
Solution :
The nth term of the A.P is 
The first term is 
The common difference is 

Substitute in the formula,



Therefore, the nth term of the sequence is 
Answer:
No
Step-by-step explanation:
y = 4x + 1 is not a direct variation. Direct variations have the form y = kx. So y = 4x would be a direct variation (k=4), but not y = 4x+1
La opinión correcta es la de Camila que argumenta que la frecuencia relativa de la cara con el #6 será un valor cercano a 0,166.
<h3>Qué es la frecuencia relativa?</h3>
La frecuencia relativa es un término matemático que se utiliza en la estadística para referirse al número de veces que un evento se repite durante un experimento.
Por otra parte, es necesario aclara que la frecuencia relativa no se modifica en gran medida si se aumenta el número de veces de una prueba, debido a que la probabilidad de ocurrencia de este evento va a ser la misma.
De acuerdo a lo anterior, Camila tiene razón debido a que considera que el valor de la frecuencia relativa no se modifica en gran medida entre 300 o 600 lanzamientos de los dados.
Nota: Esta pregunta está incompleta porque no está la tabla. No obstante, la puedo responder basado en mi conocimiento previo.
Aprenda más sobre probabilidad en: brainly.com/question/16019390
Answer:
(-5, 0) ∪ (5, ∞)
Step-by-step explanation:
I find a graph convenient for this purpose. (See below)
__
When you want to find where a function is increasing or decreasing, you want to look at the sign of the derivative. Here, the derivative is ...
f'(x) = 4x^3 -100x = 4x(x^2 -25) = 4x(x +5)(x -5)
This has zeros at x=-5, x=0, and x=5. The sign of the derivative will be positive when 0 or 2 factors have negative signs. The signs change at the zeros. So, the intervals of f' having a positive sign are (-5, 0) and (5, ∞).
Answer:
<h2>You've worked with numbers on a number line. You know how to graph numbers like 0, 1, 2, 3, etc. on the number line. There are other kinds of numbers that can be graphed on the number line, too. Let's see what they look like and where they are located on the number line.</h2>
Step-by-step explanation:
<h2>Hope this helps!!</h2>