1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
makvit [3.9K]
3 years ago
5

Convert 5.815 to fraction

Mathematics
2 answers:
Mumz [18]3 years ago
6 0
5.815 equals to 5815\1000
vagabundo [1.1K]3 years ago
6 0
Mixed fraction it would be 5 163/200 and improper fraction it would be 1163/200
You might be interested in
If anyone knows about definite integrals for calculus then please I request help! I
kicyunya [14]

Answer:

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

General Formulas and Concepts:

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals

Integration Rule [Fundamental Theorem of Calculus 1]:                                     \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:                                                         \displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

U-Substitution

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx

<u>Step 2: Integrate Pt. 1</u>

<em>Identify variables for u-substitution.</em>

  1. Set <em>u</em>:                                                                                                             \displaystyle u = 4x^{-2}
  2. [<em>u</em>] Differentiate [Basic Power Rule, Derivative Properties]:                       \displaystyle du = \frac{-8}{x^3} \ dx
  3. [Bounds] Switch:                                                                                           \displaystyle \left \{ {{x = 9 ,\ u = 4(9)^{-2} = \frac{4}{81}} \atop {x = 5 ,\ u = 4(5)^{-2} = \frac{4}{25}}} \right.

<u>Step 3: Integrate Pt. 2</u>

  1. [Integral] Rewrite [Integration Property - Multiplied Constant]:                 \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^9_5 {\frac{-8}{x^3}e^\big{4x^{-2}}} \, dx
  2. [Integral] U-Substitution:                                                                              \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}\int\limits^{\frac{4}{81}}_{\frac{4}{25}} {e^\big{u}} \, du
  3. [Integral] Exponential Integration:                                                               \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8}(e^\big{u}) \bigg| \limits^{\frac{4}{81}}_{\frac{4}{25}}
  4. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:           \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{-1}{8} \bigg( e^\Big{\frac{4}{81}} - e^\Big{\frac{4}{25}} \bigg)
  5. Simplify:                                                                                                         \displaystyle \int\limits^9_5 {\frac{1}{x^3}e^\big{4x^{-2}}} \, dx = \frac{1}{8} \bigg( e^\Big{\frac{4}{25}} - e^\Big{\frac{4}{81}} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

4 0
2 years ago
What substitution should be used to rewrite 4x^4-21x^2+20=0 as a quadratic equation
Andreyy89

let y = x^2

4y^2 -21y + 20 = 0

solve for y

then substitute back in to get x

8 0
3 years ago
Read 2 more answers
objective: central limit theorem assumptions. the factor(s) to be considered when assessing if the central theorem holds is/are
Eddi Din [679]

Answer:

Sample size

Step-by-step explanation:

Central Limit Theorem states that population with mean and standard deviation and if the sample size is large then the distribution of sample mean will be will be normally distributed. The central limit theorem holds assumptions that the factors to be considered when assessing central limit theorem is sample size.

8 0
3 years ago
PLEASE HELP!!<br>What is the sum of the measures of the exterior angles of this triangle?
RideAnS [48]

282

Step-by-step explanation:

C=180-112=68

A=180-68-51=61

sum of exterior angles=112+119+51=282

4 0
2 years ago
I don’t understand stand this question someone please help me with work shown
djyliett [7]

Answer:

60°

please look into the solution down here.

Step-by-step explanation:

since BD bisects it, then the angles should be bisected symmetrically, or in other words, ANGLE ABD = angle DBC,

hence,

4x = 2x +30

2x = 30

x = 15

therefore, angle DBC = 2x + 30 = 2(15) + 30 = 60°.

4 0
3 years ago
Other questions:
  • 31 out of 50 is what percent
    8·2 answers
  • IMPORTANT PLASE ANSWER BEFORE 4:00 PM!!!! What numbers are a distance of 9 units from −5 on a number line? Drag and drop each of
    5·2 answers
  • If m &lt;2 = 40o then what does m &lt;z equal
    13·1 answer
  • Can a equation have more than one property present?
    13·2 answers
  • See if you're a genius by answering this question!
    15·2 answers
  • What is 300% of 90? Show your work
    7·1 answer
  • She buys 12 bottles of tomato juice bottle contains three-quarter cups of juice
    9·1 answer
  • Graph x^2/49+y+1^2/4=1
    10·1 answer
  • A department store is offering the same percentage discount on all of their shoes. Suppose one pair of shoes is marked down from
    15·1 answer
  • Write an equation perpendicular to x - 4y = 20 that passes through the point (4, -3)
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!