I think iron because the other options are all bad conductors.
Looking at the equation .look at the moles noted below
- Ca(OH)_2=1mol
- NH_2Cl=2mol.
- CaCL_2=1mol
- NH_2=2mol
- H_20=2mol.
#a
There is 2 moles of NH2Cl.
- Hence limiting reagent is Ca(OH)_2
#2
Moles at reactant=3
Moles at product=5
Moles left:-

#d





Answer:
Number one is the most acidic, the one in the middle is neutral, and number nine is alkaline.
Answer:
709 g
Step-by-step explanation:
a) Balanced equation
Normally, we would need a balanced chemical equation.
However, we can get by with a partial equation, as log as carbon atoms are balanced.
We know we will need an equation with masses and molar masses, so let’s <em>gather all the information</em> in one place.
M_r: 30.07 236.74
C₂H₆ + … ⟶ C₂Cl₆ + …
m/g: 90.0
(i) Calculate the moles of C₂H₆
n = 90.0 g C₂H₆ × (1 mol C₂H₆ /30.07 g C₂H₆)
= 2.993 mol C₂H₆
(ii) Calculate the moles of C₂Cl₆
The molar ratio is (1 mol C₂Cl₆/1 mol C₂H₆)
n = 2.993 mol C₂H₆ × (1 mol C₂Cl₆/1 mol C₂H₆)
= 2.993 mol C₂Cl₆
(iii) Calculate the mass of C₂Cl₆
m = 2.993 mol C₂Cl₆ × (236.74 g C₂Cl₆/1 mol C₂Cl₆)
m = 709 g C₂Cl₆
The reaction produces 709 g C₂Cl₆.