Answer:

Explanation:
Hello,
In this case, the first step is to compute the molar mass of carbon dioxide as shown below, considering it has one carbon atom and two oxygen atoms:

It is important to notice it is the mass in one mole of such compound. Afterwards, we need to use the Avogadro's number to compute the how many moles are in the given molecules of carbon dioxide as shown below:

Finally, the mass by using the molar mass:

Best regards.
The people of Finland, who are secluded to some degree from the rest of the world by water, develop certain diseases due to the lack of genetic material from other ethnicities and races.
Physical barriers prevent fish from one stream from mating with fish from another stream, leading to a less varied gene pool among those fish. As time passes, the fish become unable to successfully mate with other groups.
A mountain range prevents two types of goat from mating, causing the gene pool to become less varied.<span>
</span>
I'm not sure but I think it is A. image one has the most spread out particles like a gas, and b has closer together particles like a liquid or solid. since there are no choices that say A=gass and B=solid, so I am guessing it is answer A.
Answer:
The correct answer is: Ka= 5.0 x 10⁻⁶
Explanation:
The ionization of a weak monoprotic acid HA is given by the following equilibrium: HA ⇄ H⁺ + A⁻. At the beginning (t= 0) we have 0.200 M of HA. Then, a certain amount (x) is dissociated into H⁺ and A⁻, as is detailed in the following table:
HA ⇄ H⁺ + A⁻
t= 0 0.200 M 0 0
t -x x x
t= eq 0.200M -x x x
At equilibrium, we have the following ionization constant expression (Ka):
Ka= ![\frac{ [H^{+}] [A^{-} ]}{ [HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%20%5BH%5E%7B%2B%7D%5D%20%20%5BA%5E%7B-%7D%20%5D%7D%7B%20%5BHA%5D%7D)
Ka= 
Ka= 
From the definition of pH, we know that:
pH= - log [H⁺]
In this case, [H⁺]= x, so:
pH= -log x
3.0= -log x
⇒x = 10⁻³
We introduce the value of x (10⁻³) in the previous expression and then we can calculate the ionization constant Ka as follows:
Ka=
=
= 5.025 x 10⁻⁶= 5.0 x 10⁻⁶
The answer is d. extrusive.
The other term for it is <em>igneous rock</em>. Igneous rock is made in lava, and another term for igneous rock is extrusive rock.
have a great day! Brainliest is greatly appreciated, and please let me know if you need help with anything else ;)