The answer is C or the third one
Answer:
![\left[\begin{array}{cc}x&y\end{array}\right] * \left[\begin{array}{cc}3&1\\4&-2\end{array}\right] = \left[\begin{array}{cc}3x+4y&x-2y\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%20%2A%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%261%5C%5C4%26-2%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3x%2B4y%26x-2y%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
The general matrix representation for this transformation would be:
![\left[\begin{array}{cc}x&y\end{array}\right] * A = \left[\begin{array}{cc}3x+4y&x-2y\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%20%2A%20A%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3x%2B4y%26x-2y%5Cend%7Barray%7D%5Cright%5D)
As the matrix A should have the same amount of rows as columns in the firs matrix and the same amount of columns as the result matrix it should be a 2x2 matrix.
![\left[\begin{array}{cc}x&y\end{array}\right] * \left[\begin{array}{cc}a&b\\c&d\end{array}\right] = \left[\begin{array}{cc}3x+4y&x-2y\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dx%26y%5Cend%7Barray%7D%5Cright%5D%20%2A%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Da%26b%5C%5Cc%26d%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3x%2B4y%26x-2y%5Cend%7Barray%7D%5Cright%5D)
Solving the matrix product you have that the members of the result matrix are:
3x+4y = a*x + c*y
x - 2y = b*x + d*y
So the matrix A should be:
![\left[\begin{array}{cc}3&1\\4&-2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D3%261%5C%5C4%26-2%5Cend%7Barray%7D%5Cright%5D)
Answer:
(32/5, -48/5)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
- Multiplication Property of Equality
- Division Property of Equality
- Addition Property of Equality
- Subtraction Property of Equality<u>
</u>
<u>Algebra I</u>
- Terms/Coefficients
- Coordinates (x, y)
- Solving systems of equations using substitution/elimination
Step-by-step explanation:
<u>Step 1: Define Systems</u>
-4x + 16 = y
2x - 32 = 2y
<u>Step 2: Solve for </u><em><u>x</u></em>
<em>Substitution</em>
- Substitute in <em>y</em>: 2x - 32 = 2(-4x + 16)
- Distribute 2: 2x - 32 = -8x + 32
- [Addition Property of Equality] Add 8x on both sides: 10x - 32 = 32
- [Addition Property of Equality] Add 32 on both sides: 10x = 64
- [Division Property of Equality] Divide 10 on both sides: x = 32/5
<u>Step 3: Solve for </u><em><u>y</u></em>
- Define original equation: -4x + 16 = y
- Substitute in <em>x</em>: -4(32/5) + 16 = y
- Multiply: -128/5 + 16 = y
- Add: -48/5 = y
- Rewrite/Rearrange: y = -48/5
The answer is 17 over 20
or in decimal your answer will be 0.85
hope this help!!!!!!