Answer:
Derived from the Pythagorean Theorem, the distance formula is used to find the distance between two points in the plane. The Pythagorean Theorem,
a
2
+
b
2
=
c
2
, is based on a right triangle where a and b are the lengths of the legs adjacent to the right angle, and c is the length of the hypotenuse. The relationship of sides
|
x
2
−
x
1
|
and
|
y
2
−
y
1
|
to side d is the same as that of sides a and b to side c. We use the absolute value symbol to indicate that the length is a positive number because the absolute value of any number is positive. (For example,
|
−
3
|
=
3
. ) The symbols
|
x
2
−
x
1
|
and
|
y
2
−
y
1
|
indicate that the lengths of the sides of the triangle are positive. To find the length c, take the square root of both sides of the Pythagorean Theorem.
c
2
=
a
2
+
b
2
→
c
=
√
a
2
+
b
2
It follows that the distance formula is given as
d
2
=
(
x
2
−
x
1
)
2
+
(
y
2
−
y
1
)
2
→
d
=
√
(
x
2
−
x
1
)
2
+
(
y
2
−
y
1
)
2
We do not have to use the absolute value symbols in this definition because any number squared is positive.
A GENERAL NOTE: THE DISTANCE FORMULA
Given endpoints
(
x
1
,
y
1
)
and
(
x
2
,
y
2
)
, the distance between two points is given by
d
=
√
(
x
2
−
x
1
)
2
+
(
y
2
−
y
1
)
2
Step-by-step explanation:
Answer:24 feet
Step-by-step explanation:
Solve for <em>x</em> when √(<em>x</em> ² - 4) = 1 :
√(<em>x</em> ² - 4) = 1
<em>x</em> ² - 4 = 1
<em>x</em> ² = 5
<em>x</em> = ±√5
We're looking at <em>x </em>≤ 0, so we take the negative square root, <em>x</em> = -√5.
This means <em>f</em> (-√5) = 1, or in terms of the inverse of <em>f</em>, we have <em>f</em> ⁻¹(1) = -√5.
Now apply the inverse function theorem:
If <em>f(a)</em> = <em>b</em>, then (<em>f</em> ⁻¹)'(<em>b</em>) = 1 / <em>f '(a)</em>.
We have
<em>f(x)</em> = √(<em>x</em> ² - 4) → <em>f '(x)</em> = <em>x</em> / √(<em>x</em> ² - 4)
So if <em>a</em> = -√5 and <em>b</em> = 1, we get
(<em>f</em> ⁻¹)'(1) = 1 / <em>f '</em> (-√5)
(<em>f</em> ⁻¹)'(1) = √((-√5)² - 4) / (-√5) = -1/√5
The sign must be negative; see the attached plot, and take note of the negatively-sloped tangent line to the inverse of <em>f</em> at <em>x</em> = 1.
Can you tell me what you need help because it doesn't says