Answer:
Range tells you how high and low the graph of this parabola goes in the “y” (vertical) directions.
1. We can see that the parabola peaks on the y-axis at y = 4. That’s as HIGH as it goes.
2. We also see that both sides of the parabola descend to the level of y = -7. That’s as LOW as it is shown to go.
So putting these together, we say the Range is given by:
-7 <= y <= 3
AMBIGUITY WARNING:
Because the two branches of the parabola go fall right down to the edge of the picture boundary, it’s UNCLEAR whether the parabola truly stops at y = -7 or CONTINUES on (to negative infinity).
In THAT case, the RANGE simplifies to:
Y <= 4
Done.
Step-by-step explanation:
The point-slope form:

The formula of a slope:

We have the points (-4, -1) and (5, 7). Substitute:

The formula for the nth term of a geometric sequence:

a₁ - the first term, r - the common ratio
![54, a_2, a_3, 128 \\ \\ a_1=54 \\ a_4=128 \\ \\ a_n=a_1 \times r^{n-1} \\ a_4=a_1 \times r^3 \\ 128=54 \times r^3 \\ \frac{128}{54}=r^3 \\ \frac{128 \div 2}{54 \div 2}=r^3 \\ \frac{64}{27}=r^3 \\ \sqrt[3]{\frac{64}{27}}=\sqrt[3]{r^3} \\ \frac{\sqrt[3]{64}}{\sqrt[3]{27}}=r \\ r=\frac{4}{3}](https://tex.z-dn.net/?f=54%2C%20a_2%2C%20a_3%2C%20128%20%5C%5C%20%5C%5C%0Aa_1%3D54%20%5C%5C%0Aa_4%3D128%20%5C%5C%20%5C%5C%0Aa_n%3Da_1%20%5Ctimes%20r%5E%7Bn-1%7D%20%5C%5C%0Aa_4%3Da_1%20%5Ctimes%20r%5E3%20%5C%5C%0A128%3D54%20%5Ctimes%20r%5E3%20%5C%5C%0A%5Cfrac%7B128%7D%7B54%7D%3Dr%5E3%20%5C%5C%20%5Cfrac%7B128%20%5Cdiv%202%7D%7B54%20%5Cdiv%202%7D%3Dr%5E3%20%5C%5C%0A%5Cfrac%7B64%7D%7B27%7D%3Dr%5E3%20%5C%5C%0A%5Csqrt%5B3%5D%7B%5Cfrac%7B64%7D%7B27%7D%7D%3D%5Csqrt%5B3%5D%7Br%5E3%7D%20%5C%5C%0A%5Cfrac%7B%5Csqrt%5B3%5D%7B64%7D%7D%7B%5Csqrt%5B3%5D%7B27%7D%7D%3Dr%20%5C%5C%0Ar%3D%5Cfrac%7B4%7D%7B3%7D)
Answer:
If he deposited weekly, he would be depositing 9 dollars each week.
Step-by-step explanation:
Just thank me later and click the crown at the top of this answer if it helped ;)