The answer is NO. This is because different environments require different adaptations. A desirable trait in one environment may be inconsequential or detrimental in another environment. This is the reason also why evolution is continuous as natural selection acts on traits of a population to ensure desirable traits are retained with changes in the environment in a dynamic world.
Answer:
If the trait for tall and trait for yellow are recessive: ttyy and ttyy
If the trait for tall is dominant and trait for yellow is recessive: TTyy and TTyy, Ttyy and TTyy
If the trait for tall is recessive and trait for yellow is dominant: ttYY and ttYY, or TtYy and TTYY
If the trait for tall is dominant and trait for yellow is dominant TTYY and TTYY, or TtYy and TTYY
A, causes infections in humans.
Explanation:
Red-shift
Emission spectra
Light from a star does not contain all the wavelengths of the electromagnetic spectrum. Elements in the star absorb some of the emitted wavelengths, so dark lines are present when the spectrum is analysed. Different elements produce different patterns of dark lines. The diagram shows part of the emission spectrum of light from the Sun.
A gradient colour spectrum of the sun.
Spectra from distant galaxies
Astronomers can observe light from distant galaxies. When they do this, they see it is different to the light from the Sun. The dark lines in the spectra from distant galaxies show an increase in wavelength. The lines are moved or shifted towards the red end of the spectrum. This effect is called red-shift. The diagram shows part of the emission spectrum of light from a distant galaxy.
A gradient colour spectrum of a distant star.
Red-shift and speed
Astronomers see red-shift in virtually all galaxies. It is a result of the space between the Earth and the galaxies expanding. This expansion stretches out the light waves during their journey to us, shifting them towards the red end of the spectrum. The more red-shifted the light from a galaxy is, the faster the galaxy is moving away from Earth