Due to the nature of spheres, they are all similar to each other.
Answer:
A) Particular solution:
![2x+\frac{1}{2}e^{-x}-\frac{8}{5}](https://tex.z-dn.net/?f=2x%2B%5Cfrac%7B1%7D%7B2%7De%5E%7B-x%7D-%5Cfrac%7B8%7D%7B5%7D)
B) Homogeneous solution:
![y_{h}=e^{-2x}(c_{1}cos(x)+c_{2}sin(x))](https://tex.z-dn.net/?f=y_%7Bh%7D%3De%5E%7B-2x%7D%28c_%7B1%7Dcos%28x%29%2Bc_%7B2%7Dsin%28x%29%29)
C) The most general solution is
![y=e^{-2x}(c_{1}cos(x)+c_{2}sin(x))+2x+\frac{1}{2}e^{-x}-\frac{8}{5}](https://tex.z-dn.net/?f=y%3De%5E%7B-2x%7D%28c_%7B1%7Dcos%28x%29%2Bc_%7B2%7Dsin%28x%29%29%2B2x%2B%5Cfrac%7B1%7D%7B2%7De%5E%7B-x%7D-%5Cfrac%7B8%7D%7B5%7D)
Step-by-step explanation:
Given non homogeneous ODE is
![y''+4y'+5y=10x+e^{-x}---(1)](https://tex.z-dn.net/?f=y%27%27%2B4y%27%2B5y%3D10x%2Be%5E%7B-x%7D---%281%29)
To find homogeneous solution:
![D^{2}+4D+5=0\\D^{2}+4D+4-4+5=0\\\\(D+2)^{2}=-1\\D+2=\pm iD=-2 \pm i\\y_{h}=e^{-2x}(c_{1}cos(x)+c_{2}sin(x))---(2)](https://tex.z-dn.net/?f=D%5E%7B2%7D%2B4D%2B5%3D0%5C%5CD%5E%7B2%7D%2B4D%2B4-4%2B5%3D0%5C%5C%5C%5C%28D%2B2%29%5E%7B2%7D%3D-1%5C%5CD%2B2%3D%5Cpm%20iD%3D-2%20%5Cpm%20i%5C%5Cy_%7Bh%7D%3De%5E%7B-2x%7D%28c_%7B1%7Dcos%28x%29%2Bc_%7B2%7Dsin%28x%29%29---%282%29)
To find particular solution:
![y_{p}=Ax+B+Ce^{-x}\\\\y'_{p}=A-Ce^{-x}\\y''_{p}=Ce^{-x}\\](https://tex.z-dn.net/?f=y_%7Bp%7D%3DAx%2BB%2BCe%5E%7B-x%7D%5C%5C%5C%5Cy%27_%7Bp%7D%3DA-Ce%5E%7B-x%7D%5C%5Cy%27%27_%7Bp%7D%3DCe%5E%7B-x%7D%5C%5C)
Substituting
in (1)
![y''_{p}+4y'_{p}+5y_{p}=10x+e^{-x}\\Ce^{-x}+4(A-Ce^{-x})+5(Ax+B+Ce^{-x})=10x+e^{-x}\\](https://tex.z-dn.net/?f=y%27%27_%7Bp%7D%2B4y%27_%7Bp%7D%2B5y_%7Bp%7D%3D10x%2Be%5E%7B-x%7D%5C%5CCe%5E%7B-x%7D%2B4%28A-Ce%5E%7B-x%7D%29%2B5%28Ax%2BB%2BCe%5E%7B-x%7D%29%3D10x%2Be%5E%7B-x%7D%5C%5C)
Equating the coefficients
![5Ax+2Ce^{-x}+4A+5B=10x+e^{-x}\\5A=10\\A=2\\4A+5B=0\\B=-\frac{4A}{5}B=-\frac{8}{5}2C=1\\C=\frac{1}{2}\\So,\\y_{p}=2x+\frac{1}{2}e^{-x}-\frac{8}{5}---(3)\\](https://tex.z-dn.net/?f=5Ax%2B2Ce%5E%7B-x%7D%2B4A%2B5B%3D10x%2Be%5E%7B-x%7D%5C%5C5A%3D10%5C%5CA%3D2%5C%5C4A%2B5B%3D0%5C%5CB%3D-%5Cfrac%7B4A%7D%7B5%7DB%3D-%5Cfrac%7B8%7D%7B5%7D2C%3D1%5C%5CC%3D%5Cfrac%7B1%7D%7B2%7D%5C%5CSo%2C%5C%5Cy_%7Bp%7D%3D2x%2B%5Cfrac%7B1%7D%7B2%7De%5E%7B-x%7D-%5Cfrac%7B8%7D%7B5%7D---%283%29%5C%5C)
The general solution is
![y=y_{h}+y_{p}](https://tex.z-dn.net/?f=y%3Dy_%7Bh%7D%2By_%7Bp%7D)
from (2) ad (3)
![y=e^{-2x}(c_{1}cos(x)+c_{2}sin(x))+2x+\frac{1}{2}e^{-x}-\frac{8}{5}](https://tex.z-dn.net/?f=y%3De%5E%7B-2x%7D%28c_%7B1%7Dcos%28x%29%2Bc_%7B2%7Dsin%28x%29%29%2B2x%2B%5Cfrac%7B1%7D%7B2%7De%5E%7B-x%7D-%5Cfrac%7B8%7D%7B5%7D)
Well if you are talking to me about the following graphic <span>http://contentlaunch.ple.platoweb.com/testimagedb/53/5377183edb46ae5c5177efb0f9dfbbd1 then we have to say that it would be 4,1. Right there you can find A. Hope this has helped you</span>
Answer: 1 4/60
Step-by-step explanation
64 is greater then 60 . 60 = 1 hour so 64 minutes = 1 whole 4 over 60
QR=9
QP=6
TU=19
TS=?
Okay so the triangles are kindred, now the equation can be made
9/16=6/x
So now we are going to cross multiply
9x=114
Now divide both sides by
912 2/3
Your answer is:
TS=12.6