Answer:Pois(ln(200))
Step-byy-step explanation:
Let N be the number of received calls in a day
That is
N∼Pois(λ).
0.5% = 0.5/100 = 1/200 of no calls
P(N=0)=e^−λ=1/200
-λ=e^(1/200)
λ=in(200)
Our number of calls in a day is distributed Pois(ln(200)).
Answer and Explanation:
Given : The random variable x has the following probability distribution.
To find :
a. Is this probability distribution valid? Explain and list the requirements for a valid probability distribution.
b. Calculate the expected value of x.
c. Calculate the variance of x.
d. Calculate the standard deviation of x.
Solution :
First we create the table as per requirements,
x P(x) xP(x) x² x²P(x)
0 0.25 0 0 0
1 0.20 0.20 1 0.20
2 0.15 0.3 4 0.6
3 0.30 0.9 9 2.7
4 0.10 0.4 16 1.6
∑P(x)=1 ∑xP(x)=1.8 ∑x²P(x)=5.1
a) To determine that table shows a probability distribution we add up all five probabilities if the sum is 1 then it is a valid distribution.


Yes it is a probability distribution.
b) The expected value of x is defined as

c) The variance of x is defined as

d) The standard deviation of x is defined as



0.0909090909 Is the answer my friend plz mark brainliest
Answer:
The slope of this equation is 5/2.
Step-by-step explanation: