I believe it’s B. The others didn’t seem correct.
No solution of the system of equations y = -2x + 5 and -5y = 10x + 20 ⇒ 2nd answer
Step-by-step explanation:
Let us revise the types of solutions of a system of linear equations
- One solution
- No solution when the coefficients of x and y in the two equations are equal and the numerical terms are different
- Infinitely many solutions when the coefficients of x , y and the numerical terms are equal in the two equations
∵ y = -2x + 5
- Add 2x to both sides
∴ 2x + y = 5 ⇒ (1)
∵ -5y = 10x + 20
- Subtract 10x from both sides
∴ -10x - 5y = 20
- Divide both sides by -5
∴ 2x + y = -4 ⇒ (2)
∵ The coefficient of x in equation (1) is 2
∵ The coefficient of x in equation (2) is 2
∴ The coefficients of x in the two equations are equal
∵ The coefficient of y in equation (1) is 1
∵ The coefficient of y in equation (2) is 1
∴ The coefficients of y in the two equations are equal
∵ The numerical term in equation (1) is 5
∵ The numerical term in equation (2) is -4
∴ The numerical terms are different
From the 2nd rule above
∴ No solution of the system of equations
No solution of the system of equations y = -2x + 5 and -5y = 10x + 20
Learn more:
You can learn more about the system of equations in brainly.com/question/6075514
#LearnwithBrainly
Answer:
[90]
Step-by-step explanation:
r= 9 because 45/5 is 9 and it works the same way for the rest of the problems.
1) We have 1300 packing peanuts, and 20 ft^2. Therefore, to find out how many packing peanuts there are per square foot, we divide the number of peanuts (1300) by the number of square feet (20 ft^2). This gives us 1300 / 20 = 65 packing peanuts per square foot.
2) We do not know the current volume of the box which fits the 1300 packing peanuts (all we know is its area). But it is reasonable to expect that if we increase the volume by 25%, the number of packing peanuts will also increase by 25%. This means we can fit 1300*(1.25) = 1625 peanuts in the larger box.
3) This will depend on how the box is larger. If its height remains the same, and its floor area increases to accommodate the greater volume, then the number of packing peanuts per square foot remains the same.
However, if the height of the box is different, then the number of packing peanuts per square foot will change, since the floor area will not increase by the same 25% any more.