Answer:
itself was just<em><u> </u></em><em><u>an</u></em><em><u> </u></em><em><u>awesome</u></em><em><u> </u></em><em><u>game</u></em><em><u> </u></em><em><u>that</u></em><em><u> </u></em><em><u>had</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>game</u></em><em><u> </u></em><em><u>in</u></em><em><u> </u></em><em><u>one</u></em><em><u> </u></em><em><u>game</u></em><em><u> </u></em><em><u>for</u></em><em><u> </u></em><em><u>my</u></em><em><u> </u></em><em><u>friends</u></em><em><u>.</u></em>
The formula is s = r * angle
Angle must be in RADIANS for the formula. Since the picture gives 135 degrees you either convert in the formula by adding the conversion factor, (s = r * angle * pi/180) or knowing that 135 degrees is 3pi/4.
s = 6 * 3* 3.14/4
s = 14.1
Answer:
The question is unclear and incomplete.
Let me explain the degrees of freedom in statistics.
Step-by-step explanation:
Statistically, degrees of freedom which is denoted as DF is the number of independent values that can vary in an analysis without breaking any constraints. It can also be referred to as the number of independent values that a statistical analysis can estimate.
Degrees of freedom also define the probability distributions for the test statistics of various hypothesis tests.
The degree of freedom has the formula:
DF = N - 1 where N number of random variables
DF = (R - 1) x (C - 1) Where R is the number of data values and C is the number of groups