Answer:
we will know that the allelic frequencies are for R 0.95 and r 0.05
Explanation:
We know that the population is in Hardy-Winberg equilibrium, we deduce the following formula:
p + q = 1
p2 + 2pq + q2 = 1
data
R: red flower allele
r: allele blor blanca
p would be equal to the allelic frequency R
q will be equal to the frequency allelic r
2p = RR
2q = rr
2pq = Rr
If there are 25 white flowers in 1000 plants, their frequency will be:
2pq frequency of the Rr genotype
white flower = 25/10000 = 0.0025 = rr = 2q = 0.0025
we deduce that q is equal to 0.05
we replace the data with the previous formula
p + q = 1
p = 1-0.05
we get as a result
p = 0.95
if p = 0.95 and q = 0.05
we will know that the allelic frequencies are for R 0.95 and r 0.05
A hazard is a danger or risk.
It’s 3-5 because you have to have 1. Claim 2. Evidence and 3. Reasoning
<span>The sugar arabinose in the agarose plate is needed to turn on the expression of the GFP (green flourescent protein) gene. The UV light is required to cause the GFP (green flourescent protein) protein within the bacteria to glow.</span>