Volume will increase. As you put particles back together then it would make it a lot heavier, giving it more volume.
Copper has a FCC i.e. face centered cubic crystal structure. The 100 plane is essentially a planar section of the cubic cell where 4 Cu atoms occupy the 4 corners of the plane along with 1 Cu atom at the center of that plane. Each of the Cu atoms in the corners is shared by 4 adjacent unit cells. Thus, there are 2 Cu atoms present in the 100 plane (4*1/4 + 1 = 2).
Now, the planar density PD along the 100 plane is given as:
PD(100) = # atoms in the 100 plane/Area of 100 plane
=
Here R = radius = 0.128 nm = 
PD = 
The theobromine molecule contains a total of 22 bonds
<span>34.2 grams
Lookup the atomic weights of the involved elements
Atomic weight potassium = 39.0983
Atomic weight Chlorine = 35.453
Atomic weight Oxygen = 15.999
Molar mass KClO3 = 39.0983 + 35.453 + 3 * 15.999 = 122.5483 g/mol
Moles KClO3 = 87.4 g / 122.5483 g/mol = 0.713188188 mol
The balanced equation for heating KClO3 is
2 KClO3 = 2 KCl + 3 O2
So 2 moles of KClO3 will break down into 3 moles of oxygen molecules.
0.713188188 mol / 2 * 3 = 1.069782282 mols
So we're going to get 1.069782282 moles of oxygen molecules. Since each molecule has 2 atoms, the mass will be
1.069782282 * 2 * 15.999 = 34.23089345 grams
Rounding the results to 3 significant figures gives 34.2 grams</span>