Answer:
823.46 kgm/s
Explanation:
At 9 m above the water before he jumps, Henri LaMothe has a potential energy change, mgh which equals his kinetic energy 1/2mv² just as he reaches the surface of the water.
So, mgh = 1/2mv²
From here, his velocity just as he reaches the surface of the water is
v = √2gh
h = 9 m and g = 9.8 m/s²
v = √(2 × 9 × 9.8) m/s
v = √176.4 m/s
v₁ = 13.28 m/s
So his velocity just as he reaches the surface of the water is 13.28 m/s.
Now he dives into 32 cm = 0.32 m of water and stops so his final velocity v₂ = 0.
So, if we take the upward direction as positive, his initial momentum at the surface of the water is p₁ = -mv₁. His final momentum is p₂ = mv₂.
His momentum change or impulse, J = p₂ - p₁ = mv₂ - (-mv₁) = mv₂ + mv₁. Since m = Henri LaMothe's mass = 62 kg,
J = (62 × 0 + 62 × 13.28) kgm/s = 0 + 823.46 kgm/s = 823.46 kgm/s
So the magnitude of the impulse J of the water on him is 823.46 kgm/s
Answer:
Explanation:
We shall apply law of conservation of momentum to know the Speed of northward moving vehicle before collision to check the veracity of driver's statement .
Let v be the velocity of composite mass after collision
Applying law of conservation of momentum in north direction
m v₂ = 2m v sin55.08
Applying law of conservation of momentum in east direction
m x 13 = 2m v cos55.08
Dividing these two equations
v₂ / 13 = tan55.08
v₂ = 13 tan55.08
= 18.62 m/s
= (18.62 x60 x 60) / 1000
= 67 km/h
= 67 x 5/8 mi/h
= 42 mi/h
So he is lieing.
Explanation:
<em>math</em><em>ematically</em><em>,</em>
<em>
</em>
<em>wher</em><em>e</em><em> </em><em>m</em><em>=</em><em> </em><em>mass</em>
<em>and</em><em> </em><em>v</em><em>=</em><em>veloc</em><em>ity</em>
<em>giv</em><em>en</em><em> </em><em>that</em><em>,</em><em> </em>
<em>kinet</em><em>ic</em><em> energy</em><em>=</em><em>4</em><em>9</em><em>3</em><em>9</em><em>0</em><em>0</em><em>J</em>
<em>mass</em><em> </em><em>=</em><em>5</em><em>0</em><em>4</em><em>0</em><em>k</em><em>g</em>
<em>maki</em><em>ng</em><em> </em><em>velo</em><em>city</em><em> </em><em>the</em><em> </em><em>su</em><em>bject</em>
<em>
</em>
<em>sub</em><em>stitute</em><em> </em><em>the</em><em>ir</em><em> </em><em>valu</em><em>es</em><em> </em><em>in</em><em> </em><em>the</em><em> </em><em>formu</em><em>la</em>
<em>
</em>
<em>
</em>
<em>
</em>
<em>
</em>
<em>Thu</em><em>s</em><em> </em><em>th</em><em>e</em><em> </em><em>velo</em><em>city</em><em> </em><em>is</em><em> </em><em>1</em><em>4</em><em>m</em><em>e</em><em>t</em><em>e</em><em>r</em><em>s</em><em> </em><em>per</em><em> </em><em>se</em><em>cond</em>
The answer is <span>It points in the same direction as it would make a compass point. In a magnetic field, t</span>he direction of the magnetic field at any location is described as the direction in which the north pole of a compass needle points at that location.
Answer:
Answer is a force liquid that cannot be compresed
on edgenuity
Explanation: