The simplified expression of (-11/2x+30)-2(-11/4x-5/2) is 35
<h3>How to simplify the expression?</h3>
The expression is given as:
(-11/2x+30)-2(-11/4x-5/2)
Expand the bracket
-11/2x + 30 + 11/2x + 5
Collect the like terms
11/2x -11/2x + 30 + 5
Evaluate the like terms
35
Hence, the simplified expression of (-11/2x+30)-2(-11/4x-5/2) is 35
Read more about expressions at:
brainly.com/question/723406
#SPJ1
Answer:
55
Step-by-step explanation:
its subtracting 15 each time
Answer:
3 3/8
Step-by-step explanation:
Correct me if I'm wrong
(a^4 + 4b^4) ÷ (a^2 - 2ab + 2b^2)
= [(a^2 - 2ab + 2b^2) (a^2 + 2ab + 2b^2)] / (a^2 - 2ab + 2b^2)
= a^2+2ab+2b^2 =The answer
(a + b)^2 = a^2 + 2ab + b^2 => square of sums
(a - b)^2 = a^2 - 2ab + b^2 => square of deference
and of course one of most important ones:
a^2 - b^2 = (a - b)(a + b) => difference of squares
Best Answer: (a^4 + 4b^4) ÷ (a^2 - 2ab + 2b^2)
= [(a^2 - 2ab + 2b^2) (a^2 + 2ab + 2b^2)] / (a^2 - 2ab + 2b^2)
= a^2 + 2ab + 2b^2
a^4 + 4b^4 => i.e. 4a^2b^2 ,
a^4 + 4a^2b^2 + 4b^4 => a^2 + 2ab + b^2 = (a + b)^2, if : a = a^2 , b = 2b^2:
(a^2 + 2b^2)^2 = a^4 + 4a^2b^2 + 4b^4 => We can't add or subtract the value to the expression.
a^4 + 4a^2b^2 + 4b^4 - 4a^2b^2 =>
(a^2 + 2b^2)^2 - 4a^2b^2 =>
(a^2 + 2b^2 - 2ab)(a^2 + 2b^2 + 2ab) =>
(a^2 - 2ab + 2b^2) (a^2 + 2ab + 2b^2)
Greetings!
Answer:
15
Step-by-step explanation:
multiply the 6 by 3 and get 18, so do the same for the top, so 5 x3 = 15