R = U : I. U is in Voltage and I is in Ampère. That gives you R = 36 : 8 = 4,5 Ohm
Answer:

Explanation:
The electrostatic potential energy is given by the following formula

Now, we will apply this formula to both cases:

So, the change in the potential energy is

The best answer is b) increased turbidity from erosion.
Nonpoint source pollution generally happens as a result of many systems interacting, and is not directly attributed to one event or pollutant. Generally, natural environmental systems participate in pollution of this kind, regardless of whether or not human activity was a factor. Examples include water runoff, or erosion.
The other pollutants listed have a direct cause and direct effect, the animal waste goes directly from the animals to the ground they live on, the car shop directly sumps the oil on the ground, and the oil tank leaks directly into the earth. Erosion causing turbidity is a less direct form of pollution, and is due to the synthesis of several natural phenomena<span />
Answer:
<em>The difference in pressure between the external air pressure, and the internal air pressure of the middle ear.</em>
Explanation:
First of all, we should note that pressure decreases with height and increases with depth. The air within the middle ear (between the ear drum and the Eustachian tube) adjusts itself to respond to the atmospheric pressure, or when we yawn. At a high altitude like on the hill, the air pressure in the middle ear, is fairly low (this is to balance the low air pressure at this height). While riding down the hill quickly, there is little time for the air pressure in the ear to readjust itself to the increasing external air pressure, causing the external air to push into the ear drum. Along the way, the air within the middle ear is adjusted by the opening of the Eustachian tube, allowing more air into the space in the middle ear to balance the external air pressure. This readjustment causes the ear to pop.
M₁ = mass of planet #1
M₂ = mass of planet #2
M = total mass
R₁ = radius of planet #1
R₂ = radius of planet #2
d₁ = initial distance between planet centers
d₂ = final distance between planet centers
a = semimajor axis of plunge orbit
v₁ = relative speed of approach at distance d₁
v₂ = relative speed of approach at distance d₂
M₁ = M₂ = 1.8986e27 kilograms
M = M₁ + M₂ = 3.7972e27 kg
G = 6.6742e-11 m³ kg⁻¹ sec⁻²
GM = 2.5343e17 m³ sec⁻²
d₁ = 1.4e11 meters
a = d₁/2 = 7e10 meters
R₁ = R₂ = 7.1492e7 meters
d₂ = R₁ + R₂ = 1.42984e8 meters
v₁ = 0
v₂ = √[GM(2/d₂−1/a)]
<span>
v₂ = 59508.4 m/s </span>
<span>
The time to fall is 1337.7 days
.</span>I hope my answer has come to your help. Thank you for posting your question here in Brainly.