1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
soldier1979 [14.2K]
4 years ago
14

Calculus 2 master needed; evaluate the integral PLEASE SHOW STEPS IF IM WRONG

x%2F%5Csqrt%7Bcosx%7D%20%7D%20%5C%2C%20dx" id="TexFormula1" title="\int{sin^3x/\sqrt{cosx} } \, dx" alt="\int{sin^3x/\sqrt{cosx} } \, dx" align="absmiddle" class="latex-formula"> I split off the sin^3 so i can use the pythag identity and allows for u substitution u=cosx du=-sinx dx -du=sin dx \int{1-u^2/\sqrt{u}*-du } I move the negative towards the outside of the integral. then i divide the terms by sqroot 2||| -\int{(1/\sqrt{u} - u^2/\sqrt{u} )} \, du I eventually get to a=1/2 b =5/2 -2{cos^a x +2/5cos^b} \, dx did I miss anything? Or is this the final answer?
Mathematics
2 answers:
sweet [91]4 years ago
3 0

Answer:

Yes, you answer is correct! It just needs to be simplified :)

Step-by-step explanation:

So we have the integral:

\int \frac{\sin^3(x)}{\sqrt{\cos(x)}}dx

As you had done, we can split off the numerator:

=\int \frac{\sin(x)(\sin^2(x))}{\sqrt{\cos(x)}}dx

Using the Pythagorean Identity, this is:

=\int \frac{\sin(x)(1-\cos^2(x))}{\sqrt{\cos(x)}}dx

Now, we can do u-substitution. Let u equal cos(x). Thus:

u=\cos(x)\\du=-\sin(x)dx\\-du=\sin(x)dx

So:

=\int \frac{1-u^2}{\sqrt{u}}(-du)

Simplify:

=-\int\frac{1-u^2}{\sqrt u}du

We can then split the terms:

=-\int \frac{1}{\sqrt u}-\frac{u^2}{\sqrt u}du

Expand the integral:

=-(\int \frac{1}{\sqrt u}du-\int\frac{u^2}{\sqrt u}du)

Simplify each of the u.

For the left, that is simply u^-1/2.

For the right, it is u^(2-1/2) or u^3/2. Thus:

=-(\int u^{-\frac{1}{2}}du-\int u^{\frac{3}{2}}du)

Reverse Power Rule:

=-(\frac{u^{1+-\frac{1}{2}}}{1+-\frac{1}{2}}-\frac{u^{1+\frac{3}{2}}}{1+\frac{3}{2}})

Simplify:

=-(\frac{u^{\frac{1}{2}}}{\frac{1}{2}}-\frac{u^{\frac{5}{2}}}{\frac{5}{2}})

Simplify further:

=-(2u^{\frac{1}{2}}-\frac{2u^{\frac{5}{2}}}{5})

Distribute the negative:

=-2u^{\frac{1}{2}}+\frac{2u^{\frac{5}{2}}}{5}

And substitute back cos(x) for u:

=-2\cos^{\frac{1}{2}}(x)+\frac{2\cos^{\frac{5}{2}}(x)}{5}

And this is precisely what you got, so well done!

We can simplify this by first multiplying the first term by 5 to get a common denominator. So:

=-\frac{10\cos^{\frac{1}{2}}(x)}{5}+\frac{2\cos^{\frac{5}{2}}(x)}{5}

Combine:

=\frac{-10\cos^{\frac{1}{2}}(x)+2\cos^{\frac{5}{2}}(x)}{5}

Factor out a cos^(1/2)(x) and a 2. Since we factored out a cos^(1/2)(x), we need to subtract their exponents inside. Thus:

=\frac{2\cos^{\frac{1}{2}}(x)(-5\cos^{\frac{1}{2}-\frac{1}{2}}(x)+\cos^{\frac{5}{2}-\frac{1}{2}}(x))}{5}

Simplify:

=\frac{2\cos^{\frac{1}{2}}(x)(-5+\cos^2(x))}{5}

Simplify:

=\frac{2\sqrt{\cos{x}}(\cos^2(x)-5)}{5}

And, of course, C:

=\frac{2\sqrt{\cos{x}}(\cos^2(x)-5)}{5}+C

So:

\int \frac{\sin^3(x)}{\sqrt{\cos(x)}}dx=\frac{2\sqrt{\cos{x}}(\cos^2(x)-5)}{5}+C

And we're done :)

solmaris [256]4 years ago
3 0

Answer:

=  - 2 \sqrt{cos(x)} +<u> 2 </u>cos⁵/₂ (x)  + C

                          5

Step-by-step explanation:

∫ <u>sin³ (x)   </u>  dx

  \sqrt{cos(x)}

= ∫ <u>sin² (x) sin (x)  </u>  dx

   \sqrt{cos(x)}

= ∫ <u>(1 - cos² (x) sin (x)</u>  dx

   \sqrt{cos(x)}

= ∫ - <u>1 - u²</u>   du

        √u

= ∫ - <u>   1   </u>  +  u³/₂   du

        √u

= - ∫ <u>   1   </u>  du  +  ∫ u³/₂   du

        √u

substitute it back

=  - 2 √u +<u> 2 </u>cos⁵/₂ (x)

                 5

add constant, therefore

=  - 2 \sqrt{cos(x)} +<u> 2 </u>cos⁵/₂ (x)  + C

                         5

You might be interested in
What is 1 &amp; 5/7 times 2 &amp; 3/4
VARVARA [1.3K]

The solution of 1\frac{5}{7} \times 2\frac{3}{4} is \frac{33}{7} \text{ or } 4.714

<em><u>Solution:</u></em>

Given that we have to find the solution of given expression

Given expression is:

1\frac{5}{7} \times 2\frac{3}{4}

Let us first convert the mixed fraction to improper fraction

Multiply the whole number part by the fraction's denominator.

Add that to the numerator.

Then write the result on top of the denominator.

Therefore,

1\frac{5}{7} = \frac{1 \times 7+5}{5} = \frac{12}{5}

2\frac{3}{4} = \frac{2 \times 4+3}{4}=\frac{11}{4}

Now the expression becomes,

1\frac{5}{7} \times 2\frac{3}{4} = \frac{12}{7} \times \frac{11}{4}

Solve and simplify the above expression

1\frac{5}{7} \times 2\frac{3}{4} = \frac{12}{7} \times \frac{11}{4} = \frac{33}{7}\\\\1\frac{5}{7} \times 2\frac{3}{4} = \frac{33}{7}

In decimal form we get,

\frac{33}{7}=4.714

Thus the solution to given expression is found

5 0
4 years ago
Polynomials <br><br> Multiply 5x(x2 - 4x + 2)
salantis [7]

Answer:

Assuming "x2" is x squared:

5x(x2-4x+2)

(5x(x2)+5x(-4x)+5x(2))

<u>5x^3-20x+10x</u>

For these polynomial multiplication problems, just distribute the number outside the parentheses.

4 0
3 years ago
Read 2 more answers
The equation yˆ=24.387x + 328.182 models Math SAT scores, y, where x is the number of hours spent studying.
Feliz [49]

Answer:

Without any studying, the score would be about 328

Step-by-step explanation:

The y-intercept of an equation represents the point where its graph crosses the y-axis. At this point the value of x is always equal to 0.

The y-intercept of the equation in this context would represent the Math SAT score of a student who did not do any studying, that is the number of hours spent studying, x = 0.

Substitute x = 0 in the given equation and solve for y;

y = 24.387(0) + 328.182

y = 328.182

Therefore, Without any studying, the score would be about 328

6 0
4 years ago
Shawn left the science museum two hours before Mark. They traveled in opposite directions. Mark traveled at 65 km/ for three hou
Brrunno [24]

Answer:94.666666666666km por hora

Step-by-step explanation:so mark viajo a 65km we multiplica por las horas (3) lo que da 195 esto se le resta a la distancia de separación (479) el resultado es 284km(esto lo recorrio Shawn en 3 horas )y si dividimos 284 entre 3 da 94.666666 km por hora.

6 0
4 years ago
Afirm will break even (no profit and no loss) as long as revenue just equals cost. The value of x (the number of items produced
s2008m [1.1K]

Cost function, C(x)=300+15x

Revenue function, R(x) = 30x

Profit function, P(x)=15x-300

Break point x=20.

Fixed cost = $300.

Variable cost = $15.

Price of item = $30.

Let x be the number of items produced and sold.

a) Cost function = Fixed cost + variable cost \times number of items

So, C(x)=300+15x

b) Revenue = Price of an item \times number of items

So, R(x) = 30x

c) Profit = Revenue - Cost

P(x)=R(x)-C(x)

P(x)=30x-300-15x

P(x)=15x-300

d) <u>Break even point</u> R(x)=C(x)

30x=300+15x

30x-15x=300

15x=300

x=20.

So, the product should be produced for 20 or more items.

Learn more about cost function here:

brainly.com/question/13129990?referrer=searchResults

8 0
2 years ago
Other questions:
  • What is the least common multiple of the denominators for the two fractions 1/6 and 5/8?
    14·2 answers
  • If ybx+ 3 then does 4 = cdb ?
    10·2 answers
  • Let the graph of f(x) represent the cost in thousands of dollars to feed the zoo animals daily, where x is the number of animals
    11·1 answer
  • Houcine veut vérifier que la pépite qu'il a trouvé dans la rivière est bien en or pur
    9·1 answer
  • A store owner bought some flower pots for $1,200. The flower pots were sold for $2,700, with a profit of $30 per pot. How many f
    9·1 answer
  • QUESTION 8,9,10,11, PLEASE DO ALL OF THEM I WILL MARK BRAINIST!!!
    14·2 answers
  • Help plz it’s due soon
    7·1 answer
  • [ MATH, PLEASE HELP. WILL GIVE BRAINLIEST TO CORRECT ANSWER ]
    13·1 answer
  • What is the standard form of this equation y=6x+13
    10·1 answer
  • What number is 62.5% of 195?
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!