Given plane Π : f(x,y,z) = 4x+3y-z = -1
Need to find point P on Π that is closest to the origin O=(0,0,0).
Solution:
First step: check if O is on the plane Π : f(0,0,0)=0 ≠ -1 => O is not on Π
Next:
We know that the required point must lie on the normal vector <4,3,-1> passing through the origin, i.e.
P=(0,0,0)+k<4,3,-1> = (4k,3k,-k)
For P to lie on plane Π , it must satisfy
4(4k)+3(3k)-(-k)=-1
Solving for k
k=-1/26
=>
Point P is (4k,3k,-k) = (-4/26, -3/26, 1/26) = (-2/13, -3/26, 1/26)
because P is on the normal vector originating from the origin, and it satisfies the equation of plane Π
Answer: P(-2/13, -3/26, 1/26) is the point on Π closest to the origin.
Answer:
$2.25
Step-by-step explanation:
73.80/32.8
- For this study, we should use t-test and the null and alternative hypotheses would be given by H₀: μ = 7 and H₁: μ < 7.
- The test statistic is -1.941 and the p-value (0.0381) is <u>greater than</u> α = 0.01.
- Based on this, we should <u>fail to reject</u> the null hypothesis.
- Thus, the final conclusion is that the data suggest the population mean is not significantly lower than 7 at α = 0.01, so there is statistically insignificant evidence to conclude that the population mean waiting time to be admitted into the hospital from the emergency room for patients at rural hospitals is equal to 7 hours.
<h3>What is a null hypothesis?</h3>
A null hypothesis (H₀) can be defined the opposite of an alternate hypothesis (H₁) and it asserts that two (2) possibilities are the same.
<h3>How to calculate value of the test statistic?</h3>
The test statistics can be calculated by using this formula:

<u>Where:</u>
- is the standard deviation.
- n is the number of hours.
For this study, we should use t-test and the null and alternative hypotheses would be given by:
H₀: μ = 7
H₁: μ < 7

t = -0.7/0.3606
t = -1.941.
For the p-value, we have:
P-value = P(t < -1.9412)
P-value = 0.0381.
Therefore, the p-value (0.0381) is <u>greater than</u> α = 0.01. Based on this, we should <u>fail to reject</u> the null hypothesis.
Thus, the final conclusion is that the data suggest the population mean is not significantly lower than 7 at α = 0.01, so there is statistically insignificant evidence to conclude that the population mean waiting time to be admitted into the hospital from the emergency room for patients at rural hospitals is equal to 7 hours.
Read more on null hypothesis here: brainly.com/question/14913351
#SPJ1
Answer:
144.44%
Step-by-step explanation:
780/540 = 1.44444 * 100 (for each percent) = 144.44 %
Answer:
15$
Step-by-step explanation:
Okey so first we establish that 25 is 100%
Matthew gets 60%
First we find 10% by dividing both sides by 10
2.5 = 10%
Then we times these numbers by 6 to find 60%
<u>60% = 15</u>
Matthew will earn <u>15$</u>
Luke will earn 10$