Lowest Common Denominator refers to lowes t common multiple. These expressions have two terms 'x' and 'y' and we want to choose the expression that has the highest power such that the other expressions can be multiplied into the common denominator.
For the 'x' term, the highest power is x⁴ and for the 'y' term, the highest power is y⁵
Common denominator of A, B, C, and D: x⁴y⁵
Answer:
37
Step-by-step explanation:
We have to find the values of F.
In this case. F is unlikely to be a polynomial.
But the problem is, we can’t calculate the values of F directly.
There is no real value of x for which x = x−1 x because F isn’t defined at 0 or 1. so,
substituting x = 2.
F(2) + F(1/2) = 3.
Substitute, x = 1/2
F(1/2) + F(−1) = −1/2.
We still are not getting the required value,
therefore,
Substitute x = −1
As, F(2) +F(−1) = 0.
now we have three equations in three unknowns, which we can solve.
It turns out that:
F(2) = 3/4
F(3) = 17/12
F(4) = 47/24
and
F(5) = 99/40
Setting
g(x) = 1 − 1/x
and using
2 → 1/2
to denote
g(2) = 1/2
we see that :
x → 1 - 1/x → 1/(1-x) →xso that:
g(g(g(x))) = x.
Therefore, whatever x 6= 0, 1 we start with, we will always get three equations in the three “unknowns” F(x), F(g(x)) and F(g(g(x))).
Now solve these equations to get a formula for F(x)
As,
h(x) = (1+x)/(1−x)which satisfies
h(h(h(h(x)))) = xNow, mapping x to h(x) corresponds to rotating the circle by ninety degrees.
528= 8x+240
288=8x
x=36 hours