first you put 12 over 100 and that is 12/100 and then simplify
Answer:
1) AD=BC(corresponding parts of congruent triangles)
2)The value of x and y are 65 ° and 77.5° respectively
Step-by-step explanation:
1)
Given : AD||BC
AC bisects BD
So, AE=EC and BE=ED
We need to prove AD = BC
In ΔAED and ΔBEC
AE=EC (Given)
( Vertically opposite angles)
BE=ED (Given)
So, ΔAED ≅ ΔBEC (By SAS)
So, AD=BC(corresponding parts of congruent triangles)
Hence Proved
2)
Refer the attached figure

In ΔDBC
BC=DC (Given)
So,
(Opposite angles of equal sides are equal)
So,
So,
(Angle sum property)
x+x+50=180
2x+50=180
2x=130
x=65
So,
Now,

So,
In ΔABD
AB = BD (Given)
So,
(Opposite angles of equal sides are equal)
So,
So,
(Angle Sum property)
y+y+25=180
2y=180-25
2y=155
y=77.5
So, The value of x and y are 65 ° and 77.5° respectively
Answer:
6+y
-23
Step-by-step explanation:
Just write it out.
Answer:
a) possible progressions are 5
b) the smallest and largest possible values of the first term are 16 and 82
Step-by-step explanation:
<u>Sum of terms:</u>
- Sₙ = n/2(a₁ + aₙ) = n/2(2a₁ + (n-1)d)
- S₂₀ = 20/2(2a₁ + 19d) = 10(2a₁ + 19d)
- 2020 = 10(2a₁ + 19d)
- 202 = 2a₁ + 19d
<u>In order a₁ to be an integer, d must be even number, so d = 2k</u>
- 202 = 2a₁ + 38k
- 101 = a₁ + 19k
<u>Possible values of k= 1,2,3,4,5</u>
- k = 1 ⇒ a₁ = 101 - 19 = 82
- k = 2 ⇒ a₁ = 101 - 38 = 63
- k = 3 ⇒ a₁ = 101 - 57 = 44
- k = 4 ⇒ a₁ = 101 - 76 = 25
- k = 5 ⇒ a₁ = 101 - 95 = 16
<u>As per above, </u>
- a) possible progressions are 5
- b) the smallest and largest possible values of the first term are 16 and 82