Let's assume that a,b&c are in one straight line, so cannot form a triangle with each other. Now, total possible Triangle that can be formed choosing any 3 points without any colinear constraint is 8C3 = 56
Answer:
£280
Step-by-step explanation:
238/0.85
Answer:
Step-by-step explanation:
Hello!
The variable of interest is:
X: number of daily text messages a high school girl sends.
This variable has a population standard deviation of 20 text messages.
A sample of 50 high school girls is taken.
The is no information about the variable distribution, but since the sample is large enough, n ≥ 30, you can apply the Central Limit Theorem and approximate the distribution of the sample mean to normal:
X[bar]≈N(μ;δ²/n)
This way you can use an approximation of the standard normal to calculate the asked probabilities of the sample mean of daily text messages of high school girls:
Z=(X[bar]-μ)/(δ/√n)≈ N(0;1)
a.
P(X[bar]<95) = P(Z<(95-100)/(20/√50))= P(Z<-1.77)= 0.03836
b.
P(95≤X[bar]≤105)= P(X[bar]≤105)-P(X[bar]≤95)
P(Z≤(105-100)/(20/√50))-P(Z≤(95-100)/(20/√50))= P(Z≤1.77)-P(Z≤-1.77)= 0.96164-0.03836= 0.92328
I hope you have a SUPER day!
Answer: 0.0228
Step-by-step explanation:
Given : The mean and the standard deviation of finish times (in minutes) for this event are respectively as :-

If the distribution of finish times is approximately bell-shaped and symmetric, then it must be normally distributed.
Let X be the random variable that represents the finish times for this event.
z score : 

Now, the probability of runners who finish in under 19 minutes by using standard normal distribution table :-

Hence, the approximate proportion of runners who finish in under 19 minutes = 0.0228
Answer:
a=29/42
Step-by-step explanation:
6a-1÷7=4
first write the division as a fraction
6a-1/7=4
add 1/7 to each side
6a=4+1/7
which is equal to
6a=29/7
divide both sides by 6
a=29/42