1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yKpoI14uk [10]
3 years ago
15

Evidence of evolution 1. make drawings to explain the difference between homologous and analogous structures. 2. define vestigia

l structures and write specific examples on animals and on your body. 3. how are embryos used as evidence of evolution? 4. list some molecules that are used to compare evolutionary ancestry and describe how.
Biology
1 answer:
Shtirlitz [24]3 years ago
8 0
Ok this is going to make me work sadly with a time restraints that I have I will be unable to draws the first picture however the rest I can do. 2. vestigial structures are generally parts of an animal's body that is unnecessary and no longer used. specifically whales have vestigial pelvis bones and as you know they dont walk as for my body the appendix is also a good example it kinda just sits there waiting to become infected. 3. embryos from separate organisms in very early stages look VERY alike and can be incredibly difficult to tell them apart from one another. 4. Everyone's favorite dioxy ribonucleic acid or DNA can show ancestry they do this by being similar like my DNA isnt exactly the same as my mothers however there are more then enough similarities in our DNA to tell that we are related. This works for any and all animals as long as they have salvageable DNA so dinosaurs dont count. using DNA we can also tell that I'm more closely related to a dolphin than a shark and I'm more closely related to sharks than sponges. hope I answered what you were looking for thoroughly
You might be interested in
N which vertebrates did feathers first evolve?
Lapatulllka [165]
<span>Wings have evolved several times independently. In flying fish, the wings are formed by the enlargement of the pectoral fins. Some fish leap out of the water and glide through the air, both to save energy and to escape predators. If they were already gliding, then any mutation that would result in an increase of the gliding surface would be advantageous to the fish that has it. These advantageous may allow these fish to out-compete the others. 

Wings have also evolved in bats, pterosaurs, and birds. In these animals, the wings are formed by the forelimbs. In some lizards that have evolved gliding flight, however, the "wings" or gliding surfaces may be quite different. The lizard Draco, for example, has gliding surfaces formed by an extension of the ribs. A number of extinct reptiles have similar gliding surfaces. Frogs that glide have expanded webbing on their hands and feet. Gliding ("flying") squirrels and marsupial sugar gliders have flaps of skin that lie between the front and rear limbs. These gliding animals all have one thing in common: a gliding surface that is formed by enlarging some parts of the body. 

In pterosaurs, the wing is formed by an elongated finger and a large skin membrane attached to this finger. In bats, the wing is formed by the entire hand, with skin membranes connecting the elongated fingers. In birds, flight feathers are attached to the entire forelimb, while the fingers have fused together. In all of these animals except birds, the wing is a solid structure. In birds, however, the wing is formed by a large number of individual feathers lying close to each other and each feather is in turn formed by filaments that interlock. 

Biophysicists have determined that flight most likely evolved from the tree down. That means most active flyers evolved flight from an animal that was already gliding. Gliding was therefore probably an indispensable intermediate stage in the evolution of flight. Since gliding has evolved in so many different groups of animals, it follows that the ancestors of birds, bats, and pterosaurs were almost certainly gliders. 

Unfortunately, the fossil records of the immediate gliding ancestors of birds, bats, and pterosaurs are all missing. The first known bat and bird fossils are recognizable as flyers. The same is true of pterosaurs. Therefore the origin of these flyers remain a mystery and a subject of often acrimonious debate. There are people who claim that dinosaurs evolved insulation, which then evolved into feathers, but the evidence for that is lacking. The so-called proto-feathers found on some dinosaurs are indistinguishable from the collagen fibers found in the skin of most vertebrates. Some of the supposedly feathered dinosaurs, such as Caudipteryx and Protarchaeopteryx, are actually flightless birds. The same is probably true of Microraptor fossils, which are (as Alan Feduccia says) probably "avian non-dinosaurs." 

Even though the immediate ancestor of birds remains a mystery, there is a fossil known as Longisquama insignis, which lived during the late Triassic. It has featherlike structures on its back. It was probably a glider of some sort. So, this animal may well be the distant ancestor of Archaeopteryx, the oldest known bird. 

In sum, flying almost certainly evolved from animals that were already gliding, or from the tree down, not from the ground up. The dinosaurian origin of birds requires that dinosaurs evolved feathers from insulation and flight to have evolved from the ground up. Both of these requirements are extremely unlikely to have occurred in evolutionary history, because dinosaurs are almost certainly ectothermic (or "cold-blooded") and therefore they never evolved insulation, and because feathers are too unnecessarily complex to have evolved as insulation. Flight from the ground up is also dangerous because large animals that attempt to fly from the ground may crash and seriously injure or even kill themselves. We all know how dangerous an airplane can be if it loses power and crashes. Small and light weight animals, OTOH, that were already gliding can survive if their attempt to fly fails. Finally, if flight evolved from gliding, then why do animals glide? The answer is that gliding is energetically much cheaper than to descend a tree, walk along the ground, and then climb up another tree. Besides, it is almost certainly much safer to glide from one tree to another than to be walking on the ground for many arboreal animals. 

See link below for details of why dinosaurs are considered ectothermic according to the available scientific evidence.</span>Source(s):<span>http://discovermagazine.com/1996/dec/aco...</span>
3 0
3 years ago
Answer "true" if the following terms are correctly paired. Use a dictionary, if necessary. lobster--vertebrate paleontology
m_a_m_a [10]

true. lobsters are vertebrates

8 0
3 years ago
Read 2 more answers
Please help me as soon as possible
miss Akunina [59]
7 bc it has more trees
8 0
3 years ago
The prenatal development of the internal reproductive structures of the male requires _______ select one:
Ilya [14]
The prenatal development of the internal reproductive structures of the male requires the <span>secretion of androgens.</span>
4 0
4 years ago
Why is e = hv important in pv cell considerations?
Zanzabum
E=hv is an equation important when dealing with light. E refers to the energy of a photon; h is Planck's constant and v is the wavelength. According to this equation, light particles called photons travels in packets of energy. This is important in pv cells because this is the technology used to harness solar energy which is converted to electricity. The amount of energy should be estimated to know the appropriate material of construction of the pv cell to achieve optimum conditions. In this way, the pv cell could maximize the sun's energy.
8 0
3 years ago
Other questions:
  • What is a third-level consumer
    13·2 answers
  • What would be a solution for air pollution
    15·1 answer
  • Most animal cells are bathed in an isotonic fluid, such as blood, which protects them from bursting. How does an isotonic soluti
    6·1 answer
  • Explain why the human population must seek balance between the need for food and environmental protection
    15·1 answer
  • Here is my hw and I need help, Please and Thank you!
    5·2 answers
  • What is responsible for the Magnetic Field around Earth? *
    7·2 answers
  • Name 2 body systems that interact to maintain
    15·1 answer
  • What is the correct answer I accidentally clicked echo
    14·1 answer
  • In animal cells, what are the holes between directly connected cells used for intercellular communication called?
    14·1 answer
  • Look at the figures showing the distribution of volcanoes and earthquakes. Why do volcanoes and earthquakes occur in so many of
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!