Answer:
The translation rule is described by
.
Step-by-step explanation:
According to Linear Algebra, a translation consists in sum a given vector (original point in this case) with another vector (translation vector). We can define translation as follows:
(Eq. 1)
Where:
- Original vector with respect to origin, dimensionless.
- Translated vector with respect to origin, dimensionless.
- Translation vector with respect to original vector, dimensionless.
From (Eq. 1) we get that translation vector is:

If we know that
and
, then the translation vector is:


And we find the translation rule by assuming that
and
in (Eq. 1):


The translation rule is described by
.
Your answer is 500, review the image I created to understand how I got my answer.
Answer:
the answer is 40:15
Step-by-step explanation: