Answer:
The correct answer is: <em>B. blood cells would be in a hypotonic solution, so water would rush into the cell causing it to expand and eventually burst</em>.
Explanation:
Cells have a certain solute concentration that produces an osmotic pressure of aproximately 300 mOsm. For that reason, IVs solutions must have a solute concentration which equals the cell osmotic pressure. That is usually acomplished by using an aqueous solution of NaCl 0.9% w/v or 5% w/v Glucose.
If an IV of pure water is administrated to a person, the blood cells will be in a hypotonic solution. That is, with a concentration lesser than the concentration inside the cells. Due to the difference in concentration, a net flow of water will be produced from the exterior to the cell interior. As the volume of the cell is increased, the cell membrane is damaged and eventually the cell will collapse.
They have chloroplasts. They do not possess mobility because they cannot just stand up and walk to the nearest river. Unicellular organisms are very small, and most organisms are multi-cellular, including plants. Plants, animals, and fungi are eukaryotic, but only bacteria is prokaryotic. So therefore, choice 3 is correct.
Answer:
The answer to your question is below
Explanation:
1.- Prophase
2.- Metaphase
3.- A
4.- centrosomes
5.- Interphase
6.- D, A, C, F, E, B
7.- Animal cells, because plant cells have a cell wall that is a rigid structure that can be divided but gives support to the plant cell and in this picture, the cells do not this structure.
8.- Interphase
9.- Because cells can reproduce and newborn cells replace the old ones.
Answer:
This question lacks options, the options are:
A) FF and ff
B) FF and Ff
C) Ff and Ff
D) Ff and ff
The answer is D (Ff and ff for parent 1 and 2 respectively)
Explanation:
This question depicts a single gene coding for fur colour in mice. The gene controls two traits, black fur and white fur, encoded by alleles F and f respectively.
According to the question, a pair of mice has been bred several times to generate the same data of 22 black fur and 23 white fur mice. Based on this data, it shows that the phenotypic ratio of black to white mice is 1:1.
To get a 1:1 phenotypic ratio of black fur offspring to white fur offspring, the parents mice must have genotypes Ff (heterozygous) and ff (same recessive alleles).
In a cross between parents Ff × ff (see punnet square), offsprings with the following genotypes will be produced: Ff, Ff, ff and ff. Ff is black furred while ff is white furred.
Ff (2) : ff (2) is equivalent to Ff (1) : ff (1).
Hence, a data of 22 black mice and 23 white mice which represents a 1:1 ratio will only be produced by parents mice with genotypes: Ff and ff.