Step-by-step explanation:
Let x be the length of segment AB.
Then the length of segment BC is (2x - 4).
The length of segment AC is x.
We know that x + (2x - 4) + x = 52.
Therefore 4x - 4 = 52, 4x = 56, x = 14.
Hence the length of segment AB is 14.
Step-by-step explanation:
a=2
b=-7
c=-15
-(-7)+-sq root (-7)²-4(2)(-15) / 2(2)
7 +- sq root 169 / 4
7+- 13 / 4
7+13 / 4, 7-13 / 4
x=5 x=-3/2
Answer:
t = 3; It takes the ball 3 seconds to reach the maximum height and 6 seconds to fall back to the ground.
Step-by-step explanation:
To find the axis of symmetry, we need to find the vertex by turning this equation into vertex form (this is y = a(x - c)² + d where (c, d) is the vertex). To do this, we can use the "completing the square" strategy.
h(t) = -16t² + 96t
= -16(t² - 6t)
= -16(t² - 6t + 9) - (-16) * 9
= -16(t - 3)² + 144
Therefore, we know that the vertex is (3, 144) so the axis of symmetry is t = 3. Since the coefficient of the squared term, -16, is negative, it means that the vertex is the maximum. We know that it takes the golf ball 3 seconds to reach the maximum height (since the t value of the vertex is 3) and because the vertex is on the axis of symmetry, it would take 3 more seconds for the ball to fall to the ground, therefore it takes 3 + 3 = 6 seconds to fall to the ground. The final answer is "t = 3; It takes the ball 3 seconds to reach the maximum height and 6 seconds to fall back to the ground.".
Answer: B
Step-by-step explanation:
The maximum is 100 and the minimum is 27.
- The only option that shows this is B.