Use the Order of Operations.
1 Parentheses
2 Exponents
3 Multiplication
4 Division
5 Addition
6 Subtraction
Answer:
Use the quadratic formula
=
−
±
2
−
4
√
2
x=\frac{-{\color{#e8710a}{b}} \pm \sqrt{{\color{#e8710a}{b}}^{2}-4{\color{#c92786}{a}}{\color{#129eaf}{c}}}}{2{\color{#c92786}{a}}}
x=2a−b±b2−4ac
Once in standard form, identify a, b, and c from the original equation and plug them into the quadratic formula.
5
2
−
4
1
+
8
=
0
5x^{2}-41x+8=0
5x2−41x+8=0
=
5
a={\color{#c92786}{5}}
a=5
=
−
4
1
b={\color{#e8710a}{-41}}
b=−41
=
8
c={\color{#129eaf}{8}}
c=8
=
−
(
−
4
1
)
±
(
−
4
1
)
2
−
4
⋅
5
⋅
8
√
2
⋅
5
2
Simplify
3
Separate the equations
4
Solve
Solution
=
8
=
1
5
Base case: if <em>n</em> = 1, then
1² - 1 = 0
which is even.
Induction hypothesis: assume the statement is true for <em>n</em> = <em>k</em>, namely that <em>k</em> ² - <em>k</em> is even. This means that <em>k</em> ² - <em>k</em> = 2<em>m</em> for some integer <em>m</em>.
Induction step: show that the assumption implies (<em>k</em> + 1)² - (<em>k</em> + 1) is also even. We have
(<em>k</em> + 1)² - (<em>k</em> + 1) = <em>k</em> ² + 2<em>k</em> + 1 - <em>k</em> - 1
… = (<em>k</em> ² - <em>k</em>) + 2<em>k</em>
… = 2<em>m</em> + 2<em>k</em>
… = 2 (<em>m</em> + <em>k</em>)
which is clearly even. QED
Answer:
345%
Step-by-step explanation:
140-525 would be the range