Answer:
- 12 ft parallel to the river
- 6 ft perpendicular to the river
Step-by-step explanation:
The least fence is used when half the total fence is parallel to the river. That is, the shape of the rectangle is twice as long as it is wide.
72 = W(2W)
36 = W²
6 = W . . . . . . the width perpendicular to the river
12 = 2W . . . . the length parallel to the river
_____
<em>Development of this relation</em>
Let T represent the total length of the fence for some area A. Then if x is the length along the river, the width is y=(T-x)/2, and the area is ...
A = xy = x(T -x)/2
Note that the equation for area is that of a parabola with zeros at x=0 and at x=T. That is, for some fence length T, the area will be a maximum at the vertex of this parabola. That vertex is located halfway between the zeros, at ...
x = (0 +T)/2 = T/2
The corresponding area width (y) is ...
y = (T -T/2)/2 = T/4
Equivalently, the fence length T will be a minimum for some area A when x=T/2 and y=T/4. This is the result we used above.
Answer:
The first set is a set of linear equations.
The way to figure this out is pretty easy. If you want to see it visually, go search up desmos graphing calculator and put in these equations.
A linear equation is a function that has a constant slope, meaning that the rate it increases or decreases will never change. The first one is a set of linear equations because it is 2 equations with constant slopes, meaning that the slopes will never change no matter what y and x are.
The second set is not, because while the first equation is linear, the second is an inequality. While it is a straight line, it doesn't count as a linear equation.
The third set, both equations have exponents on the x, which means that the slope will change depending on x. This means that both of these are not linear equations.
The only set that is a linear set is the one that has only linear equations.
Answer:
130
Step-by-step explanation:
10 x 13 = 130
13 + 13 + 13 + 13 + 13 + 13 + 13 + 13 + 13 + 13 = 130
Answer:
1/3
Step-by-step explanation: