Answer:
2n - 4
Step-by-step explanation:
expand brackets
8n - 4 - 6n
collect like terms
2n - 4
Simplify

(d - 10) to

:
\frac{2(d - 10)}{5} [/tex] - 23(d + 6) x 25(d - 10) - 23(d + 6)
Simplify 23(d + 6) x 25(d - 10) to 575(d + 6)(d - 10) :
\frac{2(d - 10)}{5} [/tex] - 575(d + 6)(d - 10) - 23(d + 6)
Then Expand :
\frac{2(d - 10)}{5} [/tex] - 575

+ 5750d - 3450d + 34500 - 23d - 138
Now Collect Like Terms :
\frac{2(d - 10)}{5} [/tex] - 575

+ (5750d - 3450d + 34500 - 23d) + (34500 - 138)
Answer :
\frac{2(d - 10)}{5} [/tex] - 575

+ 2277d + 34362
No solution
because a number can not be less than and greater than the same number.
Answer:
4
Step-by-step explanation:
Since there are 4 columns of x and y values the answer is 4.