Answer:
The correct answer would be "NADH delivers its electrons to complex I and FADH₂ deliver its electrons to complex II" in cellular respiration.
There are mainly four complexes associated with electron transport chain of cellular respiration.
Complex I or NADH: ubiquinone oxidoreductase is the complex at which NADH is oxidized to form NAD⁺. The free electrons are transported with the help of ubiquinone.
Complex II or succinate dehydrogenase is the complex associated with oxidation of FADH₂ to FAD⁺. It also transports the free electrons with the help of the ubiquinone pool.
Complex III or cytochrome bc1 complex transport free electrons from ubiquinone to the cytochrome C which is a water-soluble electron carrier.
Complex IV or cytochrome c oxidase transport the free electrons to oxygen to form water.
Antibiotic resistance happens naturally due to genetic mutation through random selection, however, genetic drift occurs on purpose and tests which genes are stronger and should continue to be passed on to future generations. In most cases, genetic drift is needed and antibiotic resistance isn’t.
<span>A dichotomous key is very easy to use because it provides only two choices. </span>
Each organism has a job in a community