Answer:
sry if im wrong) Coal and natural gas were the most used energy fuels for generating electricity. The world's electricity consumption was 18,608 TWh in 2012. ... In 2016 the total world energy came from 80% fossil fuels, 10% biofuels, 5% nuclear, and 5% renewable (hydro, wind, solar, geothermal).
Explanation:
Answer:
A) A hognose snake pretends it is dead to trick a predator.
Explanation:There is behavioral adaption and structural adaption. Behavioral adaption are actions animals take in order to survive their environments such as hibernation or migration. Structural adaption is a characteristic in a plant or animal's body that helps it to survive its environment such as camouflage. Answers B, C, and D are all examples of structural adaption.
Ice freezer
hope this helps
god bless
Answer: Plants use their photosynthesis to make glucose and their chloroplast to break the glucose down to obtain ATP.
Explanation:
Answer:
For both actin and microtubule polymerization, nucleotide hydrolysis is important for decreasing the binding strength between subunits on filaments.
Explanation:
Cytoskeletal filaments are common to eucaryotic cells and are impotartant to the spatial organization of cells. Intermediate filaments provide mechanical strength and resistance to shear stress. Microtubules determine the positions of membrane-enclosed organelles and direct intracellular transport. Actin filaments determine the shape of the cell's surface and are necessary for whole-cell locomotion. A large number of accessory proteins are present that link the filaments to other cell components, as well as to each other. Accessory proteins are essential for the assembly of the cytoskeletal filaments in particular locations, and it includes the motor proteins that either move organelles along the filaments or move the filaments themselves.
Actin filaments and microtubules are assembled with expenditure of energy i.e the ATP/GTP tightly bound to actin/tubulin is irreversibly hydrolyzed to ADP/GTP during the assembly process, and liberation of Pi in the medium occurs subsequent to the incorporation of subunits in the polymer. Pi release acts as a switch, causing the destabilization of protein-protein interactions in the polymer, therefore regulating the dynamics of these fibres. The progress is made in four areas: the chemistry of the NTPase reaction; the structure of the intermediates in nucleotide hydrolysis and the nature of the conformational switch; the regulation of parameters involved in dynamic instability of microtubules; and the possible involvement of nucleotide hydrolysis in the macroscopic organization of these polymers in highly concentrated solutions, compared with the simple case of a equilibrium polymers.