Answer:
The answer is below
Step-by-step explanation:
A polynominal function that describes an enclosure is v(x)=1500x-x2 where x is the length of the fence in feet what is the maximum area of the enclosure
Solution:
The maximum area of the enclosure is gotten when the differential with respect to x of the enclosure function is equal to zero. That is:
V'(x) = 0
V(x) = x(1500 - x) = length * breadth.
This means the enclosure has a length of x and a width of 1500 - x
Given that:
v(x)=1500x-x². Hence:
V'(x) = 1500 -2x
V'(x) = 0
1500 -2x = 0
2x = 1500
x = 1500 / 2
x = 750 feet
The maximum area = 1500(750) - 750² = 562500
The maximum area = 562500 feet²
Answer:
y = 
Domain = [3, infinity)
Step-by-step explanation:
x = 3y^2 + 3
3y^2 = x - 3
y^2 = (x-3)/3
y = 
Answer:
you want us to do all that
Step-by-step explanation:
The messurerments on a ruler and or to determine on a graph
Answer:
45 cats 18 dogs
Step-by-step explanation:
63/7 = 9
9*5=45
9*2=18
45+18=63