Answer:
2587mm^3 approx!
Step-by-step explanation:
first you divide the nut into 6 part(in triangle now, by joining centre to each edge)
let's take one part of the triangular shape then area of that part can be found by using 1/2×base×height
i.e, 1/2×13×15=97.5(mm^2)
now when we consider depth of that traingular part,we will get volume of that part as area×depth
i.e, 97.5×6=585(mm^3)
now volume of all the 6 triangular part is 585×6=3510(in mm^3)
now take circular cavity in consideration, it's volume will be π(7^2)6=923(mm^3) approximately
now reqired volume will be volume of that hexagonal part minus that of circular cavity
=3510-923
=2587mm^3
✌️
Answer:
1. 30°
2.90°
3. 12 units
Step-by-step explanation:
I can't believe there's nothing confirming that this is a parallelogram/a rhombus?! Assuming is awful, and I wish you could say you can't know for sure lol but for the sake of this answer, let's just call it a rhombus. (There was probably some context elsewhere that you didn't put over here, hopefully.)
1.
The reason I say this is: in a rhombus, the diagonals bisect the angles. This means that the diagonals split the angles they meet into two equal parts. That way, it would make sense. m∠QPR=m∠SPR=30°.
2.
If it is a rhombus, the diagonals are perpendicular to each other, so m∠QTP should be 90°.
3.
Diagnonals in a rhombus (and in any parallelogram) bisect each other, so PT=TR=6, and RP=PT+TR=12 units.
Sorry if this is all dreadfully wrong, and I hope I helped you!
(A) Vertical angles are congruent
Surface of a cubical box=6(side²)
1)We have to calculate the surface of this cubical box.
Rate=cost of painting / surface ⇒surface=cost of painting/rate
Data:
Rate=$15/m²
cost of painting=$1440
Surface=$1440/($15/m²)=96 m²
2)We find out the length of the side:
Surface of a cubical box=6(side²)
Data:
Surface of a cubical box=96 m2
Therefore:
96m²=6 (side²)
side²=96 m²/6
side²=16 m²
side=√(16 m²)=4 m
3) We find the volume of a cubical box.
volume=(side³)
volume=(4 m)³
volume=64 m³
Answer: the volume of this cubical box would be 64 m³.