Answer:
x = 50°
x = 70°
Step-by-step explanation:
A right angle is indicated by a small box.
The angles shown are right angles = 90° each. Therefore:
✔️x + 40° = 90°
Subtract 40° from each side
x = 90° - 40°
x = 50°
✔️x + 20° = 90°
Subtract 20° from each side
x = 90° - 20°
x = 70°
The dP/dt of the adiabatic expansion is -42/11 kPa/min
<h3>How to calculate dP/dt in an adiabatic expansion?</h3>
An adiabatic process is a process in which there is no exchange of heat from the system to its surrounding neither during expansion nor during compression
Given b=1.5, P=7 kPa, V=110 cm³, and dV/dt=40 cm³/min
PVᵇ = C
Taking logs of both sides gives:
ln P + b ln V = ln C
Taking partial derivatives gives:

Substitutituting the values b, P, V and dV/dt into the derivative above:
1/7 x dP/dt + 1.5/110 x 40 = 0
1/7 x dP/dt + 6/11 = 0
1/7 x dP/dt = - 6/11
dP/dt = - 6/11 x 7
dP/dt = -42/11 kPa/min
Therefore, the value of dP/dt is -42/11 kPa/min
Learn more about adiabatic expansion on:
brainly.com/question/6966596
#SPJ1
Not so sure.. but I got 9.6 meters below water level.
Answer:

Step-by-step explanation:
Using the rule of exponents
×
=
, then
×
=
= 
The maximum volume of the box is 40√(10/27) cu in.
Here we see that volume is to be maximized
The surface area of the box is 40 sq in
Since the top lid is open, the surface area will be
lb + 2lh + 2bh = 40
Now, the length is equal to the breadth.
Let them be x in
Hence,
x² + 2xh + 2xh = 40
or, 4xh = 40 - x²
or, h = 10/x - x/4
Let f(x) = volume of the box
= lbh
Hence,
f(x) = x²(10/x - x/4)
= 10x - x³/4
differentiating with respect to x and equating it to 0 gives us
f'(x) = 10 - 3x²/4 = 0
or, 3x²/4 = 10
or, x² = 40/3
Hence x will be equal to 2√(10/3)
Now to check whether this value of x will give us the max volume, we will find
f"(2√(10/3))
f"(x) = -3x/2
hence,
f"(2√(10/3)) = -3√(10/3)
Since the above value is negative, volume is maximum for x = 2√(10/3)
Hence volume
= 10 X 2√(10/3) - [2√(10/3)]³/4
= 2√(10/3) [10 - 10/3]
= 2√(10/3) X 20/3
= 40√(10/27) cu in
To learn more about Maximization visit
brainly.com/question/14682292
#SPJ4
Complete Question
(Image Attached)