We will begin by grouping the x terms together and the y terms together so we can complete the square and see what we're looking at.

. Now we need to move that 36 over by adding to isolate the x and y terms.

. Now we need to complete the square on the x terms and the y terms. Can't do that, though, til the leading coefficients on the squared terms are 1's. Right now they are 9 and 4. Factor them out:

. Now let's complete the square on the x's. Our linear term is 4. Half of 4 is 2, and 2 squared is 4, so add it into the parenthesis. BUT don't forget about the 9 hanging around out front there that refuses to be forgotten. It is a multiplier. So we are really adding in is 9*4 which is 36. Half the linear term on the y's is 3. 3 squared is 9, but again, what we are really adding in is -4*9 which is -36. Putting that altogether looks like this thus far:

. The right side simplifies of course to just 36. Since we have a minus sign between those x and y terms, this is a hyperbola. The hyperbola has to be set to equal 1. So we divide by 36. At the same time we will form the perfect square binomials we created for this very purpose on the left:

. Since the 9 is the bigger of the 2 values there, and it is under the y terms, our hyperbola has a horizontal transverse axis. a^2=4 so a=2; b^2=9 so b=3. Our asymptotes have the formula for the slope of

which for us is a slope of negative and positive 3/2. Using the slope and the fact that we now know the center of the hyperbola to be (2, 3), we can solve for b and rewrite the equations of the asymptotes.

give us a b of 0 so that equation is y = 3/2x. For the negative slope, we have

which gives us a b value of 6. That equation then is y = -3/2x + 6. And there you go!
The common denominator for each of these terms is x^3 so the new expression would be:

so to simplify that down to a single fraction
Answer:
I figure that the answer is 1.6 because to find a, you do 24 divided by 15.
For this one, look at the symbols inside each angle. In math, the rounded edges inside of angles mean they are congruent. So find which ones have the same amount of rounded edges and that would be your answer.
NKW ≅ UZE
put the corresponding angles in the middle. Since the object you were comparing to had the one line as the middle point, then that is your middle as well.
Hope this helps! Comment with any questions you may have.
Hello, please consider the following.

We can estimate the discriminant, and then, the solutions and we take the largest one.

Thank you